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ABSTRACT 

An algorithm i s  described  for  automatic  computation of a 
quadratic  estimate of the domain- of s t ab i l i t y   fo r   t he   s t ab le  
equilibrium states of  nonlinear  systems of ord inary   d i f fe ren t ia l  
equations. The study w a s  motivated by the   f a i lu re  of standard  l inear 
s tabi l i ty   analysis   techniques  to   predict   adequately the s t a b i l i t y  
of  the  current NASA Orbiting  Astronomical  Observatory (OAO) coarse 
pointing mode control  system.  Since a new version of t h i s   pa r -  
t icular  control  system w a s  used  for  the  primary  feasibil i ty test  
of the  algorithm, modeling  and s imula t ion   resu l t s   for - th i s   cont ro l  
system are  reported.  In  developing  the  algorithm  various  minimiza- 
t ion and random search  techniques were u t i l i zed   to   so lve   the  min- 
max problem  which y ie lds   the   es t imate ;   the   resu l t  of the  reported 
experimentation  and  evaluation was re jec t ion  of gradient  search 
and penalty  function  techniques  as  being  inapplicable  to  this  par- 
t i c u l a r  problem  and high  order  nonlinear problems in   general .  The 
new methods developed  and  described  here  are  the  first known ex- 
ample of solving a min-max problem via  two random searches. The 
algorithm  has  been  extensively  tested, and although  apparently 
expensive  in machine t i m e  i t  i s  poten t ia l ly  more cost-effective 
than  simulation, which i s  the  only  competitive  technique  for  high 
order  systems. Noteworthy i s  the   f ac t   t ha t  methods used by several  
authors  for problems of dimension n = 2, 3 ,  and 4 and tha t   a r e  
claimed t o  "generalize  easily"  to  higher  dimensions  are  not  feasi- 
ble  for  complicated  physical systems with n =. 6 or  n = 9,  the 
practical   cases  considered  here.  

The modeling  and simulation  studies show that  the  choice of 
sensor  (star  tracker) model has a significant  bearing on the  dif - 
f i c u l t y  of t he   s t ab i l i t y   ana lys i s ,  and that   nei ther   the  l inear  
approximation  nor  the Popov approximation  (linear  part  plus  satu- 
rations)  adequately  represents  the system s t ab i l i t y   p rope r t i e s .  
Thus the  numerical  algorithm  developed is  necessary  for   the  s ta-  
b i l i t y   a n a l y s i s  of t h i s  system. 

In examining the  use of  Lur6-Liapunov functions and perturba- 
tion  techniques  to  obtain  an improved estimate i t  i s  shown tha t  
the Popov approximation  cannot  be  analyzed  completely  with  the 
available  frequency domain techniques and that  computational  aids 
are  required  to  effectively  apply  frequency domain techniques  to 
t h i s  complex physical problem. 

The problems of numerically  solving  the Liapunov matrix equa- 
t ion and generat ing  arbi t rary  posi t ive  def ini te   matr ices  were 
solved  in  the development  of the  algorithm. 
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AN ALGORITHM FOR LIAF'UNOV STABILITY ANALYSIS OF 

COMPLEX NONLINEAR SYSTEMS WITH APPLICATION TO 

THE ORBITING ASTRONOMICAL OBSERVATORY 

Gunther R. Geiss,+ Victor D. Cohen, Robert  D'heedene, . 
David Rothschild,  and  Arthur Chomas 

Grurmnan Aerospace  Corporation 
Bethpage, New York 11714 

1. SUMMARY 

This  report  describes  the development  of a numerical  algorithm 
for   determining  the  s tabi l i ty  of nonlinear  systems  and i t s  appl ica-  
t ion  to  the  "paired-tracker"  at t i tude  control  system  that  has been 
proposed for   the NASA Orbiting  Astronomical  Observatory (OAO).  The 
object ives  of  the  study were: 1) to  demonstrate   the  feasibi l i ty  
of the  algorithm  in a nonacademic s e t t i n g ;  and 2) to  provide a 
tool   for   use  in   the  analysis /design and operat ional   par ts  of  the 
OAO program. The study w a s  motivated by the   f a i lu re  of standard 
l inear   ana lys i s   to   adequate ly   p red ic t   the   s tab i l i ty  of  the  present 
OAO a t t i t ude   con t ro l  system.  Prior  research  indicated  that  the 
algorithm would provide  results  with  higher  confidence  levels  than 
simulation, which was the  principal  tool  being  used. 

The algorithm i s  based on Liapunov s tab i l i ty   theory  and i s  
applicable  to  systems  that   are  described by a set  of quasi l inear  
d i f fe ren t ia l   equa t ions  of the form 

where x i s  the n vector of s ta te  var iab les ,  A i s  a s t ab le  
matrix,  g(x) i s  a t  least  of order  x2,  and x = 0 i s  the 
equilibrium  point of i n t e re s t   [ i . e . ,   g (0 )  = 0 3 .  This  admits most 
systems tha t  are designed by techniques  currently  used. The ob- 
j ec t ive  is  to  determine  or estimate the se t  of i n i t i a l  states from 

'Presently  with  Poseidon  Scientific  Corporation, Hauppauge, N.Y. 11787  
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which  the  system w i l l  re turn  to   the  equi l ibr ium state x = 0, 
i .e. ,  t o  estimate the domain of a t t ract ion  of   the  equi l ibr ium 
state. 

The objective is  achieved by using  LaSalle 's  theorem on the 
extent   of   asymptot ic   s tabi l i ty .   Basical ly ,   the  theorem states 
t h a t   i f  a Liapunov function V(x) and i t s  t o t a l  time derivat ive 
have cer ta in   p roper t ies   wi th in   the  set  f l Q  of s t a t e s  x such 
tha t  V(x) < 1, where ,l i s  a constant,  then a l l   t r a j e c t o r i e s  
beginning  in R Q  tend toward the  equilibrium x = 0. The problem 
of  finding  such a Liapunov function V(x) i s  resolved by re- 
s t r ic t ing  considerat ion  to   posi t ive  def ini te   quadrat ic   forms.  The 
largest   value  of 1 fo r  which the  required  conditions  hold  gives 
the  best  estimate re la t ive   to   tha t   par t icu lar   quadra t ic  form. 
This value i s  found t o  be the  solution of a constrained minimum 
problem. To eliminate  the dependence  of the  qual i ty  of the es t i -  
mate on t h e   a r b i t r a r i l y  chosen quadratic form, the  enclosed volume 
of the  estimate i s  chosen as   the  object ive  funct ion  to  be maximized 
t o  obtain  the  optimal  quadratic form. The r e s u l t  of  the computa- 
t ions i s  a hyperellipsoidal  estimate  of  the domain of a t t r a c t i o n  
of x = 0 (i .e. ,   the  optimal  quadratic  estimate  of  the domain of 
a t t r a c t i o n ) .  

The equations  describing  the  "paired-tracker"  coarse  pointing 
mode a t t i t ude   con t ro l  system  of  the OAO are  derived and  used a s  
the test problem for   determining  the  feasibi l i ty  of the  algorithm. 
This  system i s  qui te  complex and highly  nonlinear.  It i s  described 
by n ine   s ta te   var iab les  which a re   r e l a t ed  through  nonlinear  dif-  
ferent ia l   equat ions  represent ing  the  nonl inear  mechanics, actuator  
saturat ion,  and transcendental   sensor  relations.  Two models a re  
derived  for  the  sensors  and one i s  shown to  introduce  unnecessary 
complicat ions  in   the  s tabi l i ty   analysis .  It  i s  a l s o  shown v ia  
s imulat ion  resul ts   that   nei ther   the  l inear   approximation,   nor   the 
ana ly t i ca l ly   a t t r ac t ive  Popov approximation  (linear  part  plus  the 
saturation)  adequately  represents  the  system  stabil i ty  properties.  

In  developing  the  algorithm  for  application  to  this non- 
acad.emic complex problem it was necessary  to  solve  four major com- 
putational problems e f f i c i e n t l y .  These problems are :  1) genera- 
t i on  of a rb i t ra ry   pos i t ive   def in i te   mat r ices ;  2) solution of the 
Liapunov matrix  equation; 3) solution  of  the  nine  variable con- 
s t ra ined  minimum problem; and 4 )  solution  of  the  forty-five 
variable  maximization  problem. The f i r s t  was accomplished by de- 
veloping a parameterization  of  the set  of   posi t ive  def ini te  
matrices.  The second w a s  solved by select ing from the  four   avai l -  
able  techniques  the one wi th   the   l eas t   e r ror  growth with  increased 
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system  dimension. The th i rd  w a s  solved  by  devising  an  efficient 
random search   ta i lo red   to   the  geometry  of the problem.  This was 
done subsequent  to  determining  that  the  widely  used  gradient 
search  techniques  and  penalty  function methods a re   t o t a l ly   i n -  
appl icable   to   th i s  problem. The fourth problem w a s  p a r t i a l l y  
solved  via  an  "accelerated random search.''  Again,  gradient  tech- 
niques are to ta l ly   inappl icable   to   th i s  complex high  dimensional 
problem. 

The algorithm i s  shown to  be feas ib le   for   so lu t ion   of   th i s  
complex nonl inear   s tab i l i ty   ana lys i s  problem. However, t h e   s t a t e  
of the a r t  in  search  techniques  for complex high  dimensional  prob- 
lems severely l i m i t s  i t s  immediate application as an  analyt ical   or  
operat ional   tool .  It i s  shown tha t  compared to  simulation,  the 
only  other  currently  available  tool,  it promises  to  produce a 
lower cost  solution  with  specified  confidence  or  conversely  to 
produce a higher  confidence  result   for a given  cost. 

In  the  course of  examining the  use of Lur; -Liapunov functions 
t o  obtain an improved estimate i t  i s  shown that  the Popov approxi- 
mation t o  the  system model cannot  be  completely  analyzed  with  the 
available  frequency domain techniques. It is  also  noted  that  com- 
putat ional   a ids   are   required  i f   f requency domain techniques  are  to 
be e f fec t ive ly   appl ied   to  a system of t h i s  dimension. 
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2. INTRODUCTION 

This r e p o r t  describes  the development of a numerical  algorithm 
for  estimating  the domain of s t a b i l i t y  of complex nonlinear  sys- 
t e m s ,  and i t s  appl ica t ion   to  a p a r t i c u l a r   s a t e l l i t e   a t t i t u d e  con- 
t r o l  problem. Specif ical ly ,   the   a lgori thm estimates the  set  of 
i n i t i a l   s t a t e s  from  which a given  system w i l l  s e t t l e  on a desired 
equilibrium  condition.  That i s ,  i t  estimates  the domain of a t t r a c -  
t i on  of  an equilibrium  solution  of  the system of d i f f e r e n t i a l  
equations  used  to  describe  the  physical  system. The development 
was init iated  because  simulation showed that   s tandard  l inear   analy-  
s is  f a i l e d  t o  predict   accurately  the  s tabi l i ty  of the  present NASA 
Orbiting  Astronomical  Observatory (OAO) coarse  pointing mode con- 
t r o l  system. In  addition,  the  algorithm promised r e su l t s   w i th  
higher  confidence  levels  than  reasonably  possible  via  simulation. 
Simulation  only  provides  representative  operating  records  for a 
selected sample of  t he   poss ib l e   i n i t i a l   s t a t e s  and system parame- 
t e r s .  The sample i s  necessar i ly   l imited by time and  budget  con- 
s t r a i n t s .  Thus, f o r  a complex nonlinear system, the  confidence  in 
the  conclusions drawn from simulation  experiments i s  of ten   l ess  
than  desired. 

The particular  system  design examined i s  the  "paired-tracker" 
design of  Doolin and Showman [l, 21. This  system i s  a very com- 
plex and highly  nonlinear  system  that  provides an excel lent  example 
for   t es t ing   the   t rue   met t le  of the  algorithm. The model used to  
represent  the  system  has  nine  state  variables and accounts  for  the 
nonlinear  characterist ics  of  the  actuators,   vehicle,   sensors,  and 
error  processor.  The algorithm i s  based on the  use of quadratic 
form  Liapunov functions t o  estimate  the domain of s t a b i l i t y  of the 
system  in  state  space and t o  determine  the  quadratic form tha t  
maximizes the volume of the  estimate.  (This  concept was f i r s t  
described  in [ 3 ] . )  The r e s u l t  i s  a hyperel l ipsoid  that  i s  the 
optimal  quadratic estimate of the domain of s t a b i l i t y .  The algo- 
r i t hm  i t s e l f  i s  applicable t o  a wide va r i e ty  of complex nonlinear 
systems  and i s  in  no way limited t o  the  att i tude  control  system 
described  here. 

The objectives of the  study  were: 1) to  determine  the  feasi- 
b i l i t y  of using  this  method of s t a b i l i t y   a n a l y s i s  on a complex 
physical problem, and 2) t o  develop a new tool  t o  be used  in  the 
design/analysis and operation of the  specific  system. The f i r s t  
objective  arose from the  conviction  that  i t  i s  u t te r ly   na ive  t o  
assume, as  i s  of ten done, t ha t  i f  a technique i s  shown t o  solve a 
few s i m p l e  academic  problems it  can  then e a s i l y  be extended t o  



solve complex physical problems successfully.  The second  objec- 
t i v e  developed  because i t  became apparent upon reviewing  the 
design/analysis  of  the  present OAO coarse  pointing mode system 
that   there  w e r e  no appl icable   analyt ical   techniques  for   s tabi l i ty  
analysis  and that  simulation  could  not  yield  the  required  level  of 
confidence  in   the  resul ts .  The nature of the  system is such t h a t  
t he   e f f ec t  on system s t a b i l i t y  of new vehicle commands must be 
assessed on the  ground  during a f l i g h t  and so the  tool  used  in 
analysis/design would a l so   l i ke ly  be used in   operat ions.  Thus i f  
the  algorithm  proved  to be feas ib le  and provided,  as i t  should, 
more confidence  than  simulation  results, i t  would become a s i g n i f i -  
can t   too l   in   the  OAO program. 

The algorithm i s  based on Liapunov stabil i ty  theory,   the  only 
available  sufficiently  general  approach  to  nonlinear  system  sta- 
b i l i t y   a n a l y s i s .  The pr imary  diff icul ty   in   appl icat ion of the 
theory i s  the  construction of an appropriate Liapunov function. 
This   d i f f icu l ty  i s  eliminated by restr ic t ing  considerat ion  to   pos-  
i t ive   def in i te   quadra t ic  form  Liapunov functions.   This  restric- 
t ion  i s  subs tan t ia l ,   bu t  i t  r e s u l t s   i n  an est imate   that  i s  always 
an el l ipsoid  in   n-space,  and i s  often a better  estimate  than 
those  obtained  with more complex functions [ 4 ,  51. The f a c t   t h a t  
the  estimate i s  always a hyperell ipsoid means i t  i s  eas i e r  t o  
v i sua l ize  and interpret   than  other   es t imates ,  and some of the com- 
putat ions  are   s implif ied.  

The report  i s  organized  as f o l l o w s .  In  Section 3 the problem 
of estimating  the domain of a t t r a c t i o n  of  an equilibrium  solution 
i s  formulated and the   requis i te   par t s  of Liapunov s tab i l i ty   theory  
are  presented. The optimal  quadratic  estimate is  formulated  as a 
min-max problem  and the  s t ructure  of  an algorithm t o  solve  the 
problem i s  outlined. The solutions of four  specific  computational 
problems are  presented, namely, the  generation of pos i t ive   def in i te  
matrices,   solution of  the Liapunov  equat’ion,  solution  of  the  mini- 
mum problem, and solut ion of the maximum problem. 

Section 4 displays  the  formulation of the  system  state  equa- 
t ions,  a reduced state  approximation, and  an  approximation  suitable 
f o r  Popov type  analysfs. The r e s u l t  of  comparing these models by 
simulation is  that  neither  the  l inear  approximation  nor  the Popov 
approximation  adequately  represents  the  stabil i ty p r o p e r t i e s  of the 
system. 

The computational  procedures and over-al l  program description 
are  presented  in  Section 5. It i s  shown here  that   gradient  search 
techniques  are   total ly   inappl icable   to   the min-max problem. The 
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method of   interpret ing  the program r e s u l t s  i s  described and some 
representa t ive   resu l t s  are given  for   the complete  nine  dimensional 
model and the six dimensional  reduced state model. The algorithm 
i s  then compared to  simulation on the  basis  of  cost   to  achieve a 
similar leve l  of confidence. 

In  Section 6 ,  the  conclusions of the   feas ib i l i ty   eva lua t ion  of 
the  algorithm  are  presented,  along  with some conclusions on the 
s t a t e  of the   a r t   in   search   techniques  and i n   t h e   s t a b i l i t y   a n a l y s i s  
of complex nonlinear  physical   problems.  This  leads  to  identifica- 
tion  of some problems requir ing  fur ther   a t tent ion.  

The appendices  present  details  of  various parts of the  study 
t h a t  were  too  complicated for   the body of the  report .  Appendix A 
g ives   de ta i l s  of the  system model der ivat ion and the  derivation 
of i t s  approximations.   Simulation  results  are  i l lustrated  in 
Appendix B.  In Appendix C the   l inear  model i s  analyzed and the 
Popov approximation i s  only  partially  analyzed  because  of  the l i m i -  
ta t ions  in   the  current   s ta te   of   the   ar t   in   f requency domain tech- 
niques. Appendix D r epor t s   de t a i l s  of solutions of computational 
problems and out l ines   reasons  for   inappl icabi l i ty   of   gradient  
searches and penalty  function  techniques. The  way to   i n t e rp re t  
the  numerical  results is described  in Appendix E .  I n  Appendix F, 
a var ian t  on the  algorithm i s  presented,  along  with  an  outline of 
the  use of  Lur6-Liapunov functions  for  obtaining an improved e s t i -  
mate.  Finally, Appendix G gives  flow  charts  for  the  algorithm. 
FORTRAN I V  program l i s t i ngs   a r e   ava i l ab le  upon request from the 
Research  Department, Grurmnan Aerospace  Corporation,  Bethpage, New 
York 11714. 
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3. OPTIMAL  QUADRATIC  ESTIMATION OF THE  DOMAIN OF ATTRACTION 

This sect ion i s  devoted  to  describing  the  theory of optimal 
quadratic  estimation of the domain of a t t rac t ion ,   the   s t ruc ture  of 
an  algorithm  for  obtaining  the estimate, and presenting  solutions 
of  associated  computational  problems. The reader is  assumed t o  be 
familiar  with  fundamental Liapunov s tabi l i ty   theory,   say [ 6 ] .  

It is  assumed that  the  physical  system i s  described by a 
quasi l inear   vector   different ia l   equat ion of the form 

;r = Ax + g(x) (3-1) 

where the  dot  denotes  differentiation  with  respect  to time t, 
x = x ( t )  i s  the n X 1 r e a l   s t a t e   v e c t o r ,  A i s  the matrix of 
the   l inear   par t  which i s  s t a b l e ,   x ( t )  0 i s  an  equilibrium 
solut ion,  and g(x)  contains no l inear  terms,  i .e. ,   denoting  the 
eigenvalues  of A by hi(A), 

These  assumptions are   not  
systems. S ince   v i r tua l ly  

0 (i = 1, 2,  ..., n) 

= o .  

rest r ic t ive  with  respect   to   engineered 
a l l  design  techniques  are  based upon 

l inea r  systems  analysis,  an  engineered lumped parameter  system 
w i l l  almost  always be representable by (3-1) and meet the assump- 
t ions  of ( 3 - 2 ) .  The la t ter  simply s ta te   tha t   the   l inear iza t ion  of 
the  system  has i t s  poles   in   the   l e f t   ha l f   p lane ,   the   equi l ibr ium 
solut ion (ke = 0 )  can be shif ted  to   the  or igin by the  t ranslat ion 
x '  = x - X e ,  and the power series expansion  of  g(x)  has no l i n -  
ea r  terms. 

The domain of a t t r a c t i o n  B ( 0 )  of  the  equilibrium  solution 
x = 0 is  t h e . s e t  of i n i t i a l  states from  which a l l   t r a j e c t o r i e s  
set t le  to   zero  as  time tends   to   in f in i ty ,  i . e . ,  
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where x(t,xo)  denotes  the  unique  solution  of (3-1) such t h a t  
x (0) = xo. The assumptions  that A i s  a s table   matr ix  and g (x) 
has no l i nea r   pa r t  mean t h a t  x = 0 is  an  asymptotically  stable 
solut ion of (3-1) and thus S(0) i s  a nonempty set .   In   the  event  
t ha t  S ( 0 )  i s  the whole space, x = 0 i s  s a i d   t o  be globally 
asymptotically  stable and there can  be no other  equilibrium  solu- 
t ion.  Many nonlinear  systems  are  not  globally  asymptotically 
s t ab le  and the problem then i s  t o  determine S(0 )  for  given  sys- 
t e m  parameter  values.  This i s  the problem treated  here .  

The two most frequently  used  approaches t o  determining B (0) 
are   the Zubov method and the  LaSalle  theory. The  Zubov method 
requires   solut ion of a pa r t i a l   d i f f e ren t i a l   equa t ion  which  con- 
t a ins  an a rb i t ra ry   func t ion .  The solution i s  d i r e c t l y  dependent 
on the  arbi t rary  funct ion and i s  usually  obtained  via a power 
series. If   the  solution can  be  obtained  in  closed form the domain 
B ( 0 )  i s  obtained  exactly; however, t h i s  i s  rarely  the  case  and 
each  truncation of the series solution  provides  an estimate of 
B ( 0 ) .  The convergence  of the  ser ies   usual ly  i s  nonuniform and i s  
dependent on an a rb i t ra ry   func t ion .  Of t e n   t h e   f i r s t  t e r m  of  the 
s e r i e s  (which i s  a quadratic form) provides a bet ter   es t imate   than 
higher  order  estimates.   Further,   higher  order  estimates  are  hard 
t o  v i sua l ize  and in te rpre t .   F ina l ly ,   the  series solut ion  requires  
that   g(x)  be expressed  as a power se r i e s  [ 4 ] ,  which  can  be ex- 
tremely  tedious  in a complex problem.  This  led  to  the  concept 
[3 ,  51 of  developing  the  optimal  quadratic  estimate which would 
provide  suitable  engineering  estimates,   easier  visualization and 
in te rpre ta t ion ,  and s impler  computation. 

The I-aSalle theory i s  summarized i n   h i s  theorem on the  extent 
of   asymptot ic   s tabi l i ty  [ 6 ] .  

Theorem: Let V(x) be a scalar   funct ion  with 
continuous f i r s t   p a r t i a l   d e r i v a t i v e s .  Let 
f l ~  = [xlV(x) < a )  designate  the  region where 
V(x) < d .  Assume tha t  Q d  i s  bounded and tha t  
within : 

V(X) > 0 f o r  x # 0 

(3-4)  
V(x) < 0 fo r  x # 0 . 
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Then the  or igin is  asymptot ical ly   s table ,  and 
above a l l ,  every  solut ion  in  SZe tends  to 
the  or igin as t -+ m. 

Since  the  function V(x) i s  a t  our  disposal we choose the 
s implest  one, i .e.,  a posi t ive  def ini te   quadrat ic  form, 

v(x) = x Px , P > O .  T 

0 thers  [ 7, 81 have t r ied   the  Lur6-Liapunov function 

v(x) = x Px + 1 gT(x)dx T 

(3-5)  

but  use of (3-6) requires  ei ther  proving  posit ivity of (3-6) fo r  
given  g(x)  or  limiting  g(x)  to  the  class  of  functions  for which 
V(x) , i n  (3-6) , i s  pos i t ive   def in i te .   Nei ther  seems a su i tab le  
a l ternat ive.   In   any  event ,   the   es t imate  Re w i l l  be much  more 
complex to   v i sua l ize  and i n t e r p r e t   i f  (3-6) is used. The use of 
(3-5) guarantees  that  V(x) > 0 fo r  x # 0, and that  R Q  i s  
bounded since SZl i s  always a hyperell ipsoid.  Using (3-5) and 
(3-1) yields 

;(x) = - xTQx + 2xTPg (x) 

where 

A P + P A = - Q .  T 

( 3  -7) 

Equation (3-8) i s  ca l l ed - the  Liapunov matrix  equation.  If Q i s  
posi t ive  def ini te   then V(x) < 0 in  a neighborhood  of x = 0 
since  g(x) is of the  order of x2.  Given a pos i t ive   def in i te  Q 
and a s tab le  A the  solution P of (3-8) i s  always  pqsitive 
de f in i t e .  Thus, i t  remains to   specify R such tha t  V(x) < 0 i n  
Q. That i s ,  f ind  the  largest  R such  that  the  condition  holds 
or ,   equivalent ly ,   s ince  the  e l l ipsoids  RQ are  concentric and 
nested,   f ind  the  least   value of V(x)  on +(x) = 0. The equiva- 
lence i s  indicated  in   Fig.  3 - 1 .  
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Fig. 3-1 Two Dimensional  Representation of  Problem Geometry 

Thus, w e  define 

a =  min V(x) 
x c E  

i . e . ,  as   the  solut ion of a constrained minimum problem. The 
o r ig in  i s  excluded  because i t  y ie lds   the   t r iv ia l   so lu t ion  = 0 .  

The value of a and thus  the estimate R Q  are   funct ions of 
Q, through P and the Liapunov equation. To remove t h i s  depen- 
dence on an a rb i t ra ry   mat r ix  we  define  the  optimal  matrix , Qo , 
t o  be the one which  produces  the  estimate  with  the  largest volume. 
The volume of the  estimate i s  proport ional   to  

(3  -10) 
i= 1 L 

10 



i .e. ,  the  product  of-the semiaxes  of RQ, and thus 

(3 -11) 

The optimal  quadratic estimate, R;, i s  obtained by solving 
(3-9) and (3-11) , which form a min-max problem. The algorithm 
tha t   so lves   t h i s  problem  must, in  the  process,  solve  the  following 
problems: 1) generate  arbitrary  elements , Q, of the set  of 
pos i t i ve   de f in i t e  matrices; 2) solve  the Liapunov equation (3 -8 ) ;  
3) solve  the minimum problem (3-9) f c r  each Q; and 4 )  determine 
the  optimal Q according  to (3-11) . The way i n  which a and Q 
a r e   r e l a t ed  means tha t  problem 4 )  must be solved by repeatedly 
solving  problem 3 ) .  (Another  approach t o   t h i s  problem  based on 
select ing P matrices i s  given  in Appendix F . )  

The matrices Q are   generated  as   posi t ive  def ini te   matr ices  
by recognizing  their   orthogonal  similari ty  to a diagonal  matrix 
with  posit ive  eigenvalues,  i . e .  , 

T T 
Q = S A S  , S S = I n  

(3  -12) 

A = diag {Al, . . ., 'nj J A. 1 > o  , i = 1, 2,  ..., n . 

The matrices S are  generated  as a product of s imple ro t a t ion  
matrices by u t i l i z i n g  a parameterization  of  unitary  matrices  given 
by Murnaghan [ 9 1 .  (The de ta i l s   a r e   g iven   i n  Appendix D . ) The 
n X n matrix Q i s  then  specified by n(n + 1 ) / 2  parameters 

the number of free  elements  in a syrmnetric matrix) and  formed by 
(n(n - 1) /2) + 1 matrix  multiplications.  

There a r e  a t  present   wri t ing  four  methods of  solving  the 
Liapunov equation. Comparison of  the  four,  based on increase  in  
e r r o r  and  computation time with  increase  in  dimension,  happens  to 
lead   to   se lec t ion  of the  least   elegant  approach. Although i t  i s  
the most time consuming it s u f f e r s   l e a s t  from increase   in   e r ror  
with  increase  in  dimension. The so lu t ion   a r i ses  from recognizing 
t h a t   i f   t h e  Liapunov equation i s  wr i t ten   as  a vector  equation (P 
and Q reordered  as n2 X 1 matrices) a simple pattern  appears, 
viz . , 
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Amod 

where 

=- 

d = AT@ In + I n @ A T  

@ i s  the Kronecker product and In i s  the n X n iden t i ty  
matrix, i . e .  i f  n = 2 

(3  -13) 

Thu 

- - 
*mod 

s ,  P i s  obtain 

(3 -14) 

( 3  -15) 

Led by forming Amody calcul  a t ing  i t s  inverse,  
calculating  the  elements  of P according t o  (3-13) and res t ruc tur -  
ing P. (See Appendix D f o r   d e t a i l s  .) 

The determination of  an estimate, given  the matrix Qy i . e .  , 
the  calculation of fl via  

a =  min V(x) 
X E E  

(3  -9)  
E = JxlG(x) = 0 , x # 0 )  1 
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can be carr ied  out   via  a gradient  search-penalty  function  technique 
or  a specially  developed random sea rch .   In   t he   f i r s t  approach  the 
constraints  of  the problem are   e l iminated by replacing them with 
penalty terms, i .e.  , by redefining d as  

( 3  -16) 

where nl= 1 or  2,  kl and k2 are   posi t ive,   the  second t e r m  
i s  the  penal ty   for   s t raying from +(x) = 0, and  the  third t e r m  i s  
the  penalty  for  nearing x = 0 .  In   theory,   i f   k l  and k2 tend 
to   in f in i ty   then  a of  (3-16)  approaches d of ( 3  -9) . In  prac- 
t i ce   the   se lec t ion  of k l  and k2 i s  a very  delicate  matter 
since  if   they  are  too  large  the  function V(x) i s  "masked" and i f  
too  small   the  penalt ies  are  not  severe enough and a search w i l l  
wander away from the  constraint   surface and possibly toward the 
point x = 0 .  This i s  an  important  practical problem because a s  a 
rule  the  range of the  functions  in (3-16) i s  not known for  a given 
domain of t h e i r  arguments,  even to   o rders  of  magnitude,  without 
expending substant ia l   addi t ional   computat ional   effor t .   In  any 
event,  the  term p (x)  tends  to  introduce unknown local  minima 
near  the  origin,  which,  as any other   local  minima, a c t   a s  a t rap 
for  a gradient  type  search. [One can v isua l ize   th i s  by considering 
p (x) t o  be an  inverted cup in  the bowl  V(x) . ] Gradient  searches 
are   inappl icable  t o  t h i s  problem  because  of  the many loca l  minima, 
the  superior   a t t ract iveness  of t h e   t r i v i a l   s o l u t i o n   a t  x = 0,  and 
the   d i f f icu l ty  of obtaining  the  gradient of the  expression  in 
parentheses  in (3-16) e i the r   ana ly t i ca l ly  o r  numerically. 

The random search, which was i n i t i a l l y  developed t o  provide a 
method for   cer t i fy ing   tha t   the  computed value was in   fac t   the   so lu-  
t ion ,   ac tua l ly  became a more effect ive  tool   for   solving  the  prob-  
l e m .  I t  u t i l i ze s   t he   bas i c  geometry  of  the  problem as  portrayed  in 
F i g .  3-1. A large  value Vo i s  chosen,  the  ellipsoid V(x) = Vo 
i s  constructed  and  points x a r e   s e l e c t e d   a t  random from t h e   c i r -  
cumscribed  box,  then  the  logical  pattern of Fig. 3-2 i s  followed. 

The n e t   r e s u l t  i s  that   the   search i s  always  conducted i n  a 
succeedingly smaller box circumscribed  about  an  ellipsoid and the 
random search  looks  for a point where +(x) > 0 from  which a one 
dimensional  search  along  the  line from x to  the  origin  proceeds 
to  f ind  +(x) = 0. A t  tha t   po in t  a new smaller e l l i p so id  is  de- 
fined and the  procedure i s  repeated. 
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Fig. 3-2 Schematic  of Random Search  Procedure 

The determination  of  the  optimal  matrix, Qo, i s  much more 
d i f f i c u l t  because  of . the  higher dimension  of the problem, 
n(n + 1) /2  versus  n,  and  the  lack of  any knowledge of  the  prob- 
lem geometry.  This  problem was at tacked  via  a modification of the 
"accelerated random search' '   described by Barron [ 10 3 .  Basically,  
the  process is  a one dimensional  deterministic  search  along a 
rand.omly se lec ted   d i rec t ion .  The procedure i s  t o  s e l ec t ,  from a 
spec i f ied   d i s t r ibu t ion ,  a set  of perturbations on a s ta r t ing   po in t ;  
i f  an improvement i s  achieved,  continue  searching  in  the same 
d i rec t ion  and double  the  step  size  each t i m e  u n t i l  no fur ther  i m -  
provement i s  obtained. If no improvement i s  obtained on the f i r s t  
s tep,   reverse   direct ion and  proceed a s  above. I f   ne i the r   d i r ec -  
t ion  yields  an improvement, s e l ec t  a new s e t  of  perturbations. 
The accelerat ion i s  obtained from doubling  the  step  sizes  in  the 
successful   d i rect ion.   In   addi t ion,   the   dis t r ibut ion i s  "narrowed 
down" as  success i s  achieved;  this  provides a f iner   search toward 
the  end. We have  added the  capabi l i ty   to  "widen" the   d i s t r ibu t ion  
i f  no success i s  achieved  af ter  a ce r t a in  number of t r i a l s .   T h i s  
makes possible "jumping out"  of  local minima in  which the  search 
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may become trapped i f   the   per turbat ions  are   too small. The d e t a i l s  
of  these  searches may be found i n  Appendix D. Gradient  searches 
are   inappl icable   to   the znaximization  problem  because  of i t s  dimen- 
sion.  In  the 45 dimensional  space  of Q, 45 random samples pro- 
duce more useful  global  information  than  the 45 perturbations re- 
quired t o  numerically  evaluate  the  gradient of (3-10)at one point,  
which  cannot  be  obtained  analytically. 



4 .  MODELING OF THE  OAO "PAIRED-TRACKER" 

COARSE P O I N T I N G  MODE ATTITUDE CONTROL SYSTEM 

This  section  presents a summary of the  derivation of the  sys- 
t e m  model, the  formulation of the state equat ion  in   the  required 
form,  and some approximations to   the  state equation. 

A model i s  needed to   represent   the   ac tua l  hardware  and  space- 
craf t  dynamics in  mathematical  form.  Although  modeling  of  the OAO 
had  been done pr ior   to   th i s   s tudy ,  a reder ivat ion w a s  performed 
to  provide a physical   "feel"   for   the model and  an  appreciation  of 
the  approximations  necessary  to  create a usefu l  and usable model. 

A dig i ta l   s imula t ion  is  used to   ve r i fy   s t ab i l i t y   o r   l ack  of 
i t  for   var ious  cases   for  comparison with  the estimate produced by 
the  algorithm. It i s  a l so   used   to  compare the  various  simplified 
models with  the  principal  one.  

The der ivat ion of the  system model w i l l  be  considered f i r s t .  
It w i l l  be seen  that   the  choice of  sensor model g r e a t l y   a f f e c t s  
t he   d i f f i cu l ty   i n  performing  the  analysis. The basic  block  diagram 
i s  given  in  Fig.  4-1.  

The .OAO coarse  pointing mode a t t i t ude   con t ro l  system  uses 
i n e r t i a  wheels to  supply  control  torques  and momentum storage.  
Vehicle   a t t i tude i s  sensed by s t a r   t r acke r s ,  whose output i s  
processed  and  put  through a compensator to   genera te   a t t i tude   p lus  
derived rate information. The compensator  output  drives  the momentum 
wheel  motors.  In  effect  this  system i s  a momentum regulator   with 
an  equilibrium  described by zero body rates and  an a t t i t u d e  a t  o r  
near  the one des   i red.  

To derive a  model t ha t  i s  of pract ical   use  some basic  assump- 
t ions  must be made.  The assumptions  that   follow  lead  to  simplifi-  
cat ions  in   the model, but  they must be j u s t i f i e d  by a demonstration 
that   the  model behaves e s s e n t i a l l y   l i k e   t h e   r e a l  system. 

1. The vector between the  spacecraft  and a guide s tar  ex- 
pressed  in   iner t ia l   coordinates  i s  assumed t o  be constant  indepen- 
dent  of  orbit   posit ion.  That i s  to   say ,   para l lax   e f fec ts   a re  
neglected.  This  assumption is  borne  out by the   fac t   tha t   the  
para l lax   to   the   neares t  star (not  our  sun) i s  only 0.75 sec  of 
a r c .  
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Trackers 1 & 2 I 
Commanded 
Gimbal  Angles 

I C  6 IC 2c B2c 

Fig. 4-1 Block Diagram of Basic Model 

2 .  The dynamics of the gimbaled s tar  t racker ,   basical ly  a 
lag, i s  neglected.  Analysis  has shown that   the   lag,   i f   included,  
has no e f f e c t  on spacecraf t  dynamics. The lag  break  occurs  approxi- 
mately one decade beyond the  region of spacecraft  response. 

3 .  The saturat ion  and  quant izat ion  in   the  s tar   t racker   readout  
(d ig i t i ze r   l og ic   un i t ,  DLU) are ignored. This assumption w a s  an 
imposed ground r u l e  of the  study,  and w a s  based on the  expectation 
of  using a DLU with a l a rger   l inear   range .  The quantization  has 
neg l ig ib l e   e f f ec t  on s t a b i l i t y  . 

4 .  The gyroscopic  torques  of  the  control  wheels  are  neglected. 
This  assumption i s  v e r i f i e d  by study  and  simulation  of  the OAO. 
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5. The i n e r t i a  is  assumed t o  be  spherical ;   in   par t icular ,  
the  torque  coupling of r a t e  and accelerat ion due to  products of 
i n e r t i a  is  assumed t o  be  zero. Once a g a i n   s i m l a t i o n  and the   f ac t  
t h a t  Iij/Ijj < 0.01 bear  out  this  assumption, where Iij are 
elements  of  the  inertia  tensor. 

P r i o r  t o  discussing each  block  of  the  figure i t  i s  necessary  to 
define some coordinate  systems. An ine r t i a l   r e f e rence  frame,  fixed 
in  space, i s  defined  as X r ,  Y r ,  Z r ,  where X r  i s  the   l ine  of s igh t  
t o  the  target .  A body frame,  xb, Yb, Zb, aligned w i t h  the   control  
axes,  i s  re la ted  t o  t h e   i n e r t i a l  frame by a conventional  Euler  trans- 
formation  described by @, 8, +, the r o l l ,  p i tch,  and yaw Euler 
angles.  Each tracker  has i t s  own reference  frame, X,,,R, Ym, Zm, 
which i s  fixed  in  the body and i s  re la ted   to   the  body frame by a 
simple  transformation. The tracker  axis  frame, XT, YT, ZT, is  
then  re la ted  to   the  t racker   reference frame  by the  angles a ,  B ,  y 
(rotations  about  the  tracker  optical,  inner  gimbal,  and  outer 
gimbal  axes). Thus a l l  axes of  importance a re   r e l a t ed   t o  a fixed 
i n e r t i a l  frame. Each individual  block of the  system w i l l  now be 
discussed. Appendix A presents a detai led  descr ipt ion of the  co- 
ordinate  systems  and  the  blocks  considered below. 

F i r s t  consider  the  block of trackers.  The two basic models and 
their   re la t ive  meri ts   are   discussed  a t   length i n  [ll]. The angle 
model i s  derived from the   fac t   tha t   the   l ine  of s igh t  t o  a s t a r  i s  
fixed i n  iner t ia l   space .  The r a t e  model i s  derived by equating  the 
vehicle   rotat ional   ra te   as   expressed i n  t h e   i n e r t i a l  frame and the 
tracker  frame, which i s  by def in i t ion   a l so  an i n e r t i a l  frame. Ba- 
s i c a l l y ,  th.e angle model for   t racker  1 i s  described by 

where A B ,  Ay are  gimbal  angle  errors  and 0 ,  8, + must be  de- 
r ived from p, q,  r i n  an  Euler  integration  block. [Note tha t  
s(*) z s i n ( * ) ,   c ( * )  = C O S ( * ) ,  and t (* )  = tan(*).]  This  block 
solves  three  simultaneous  nonlinear  differential  equations  in @, 
8,  11/ with  inputs p ,  q, r and i s  independent  of  the number of 
trackers  in  use.  
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The rate model for   t racker  1 is 

At t i tude   cont ro l  of the  spacecraf t   necessi ta tes  a minimum of 
two t rackers .  Thus t h i s  model a t  best   requires  solving  four  simul- 
taneous  different ia l   equat ions  in  P i ,  y i ,  B j ,  y j  i # j = 1,2,3,4, 
with  p,  q, r as inputs.  It a l so   requi res  a system  order  of a t  
least  one greater  than  the  angle model. The rate model w i l l  a l s o  
cause a column of zeros   in   the  matr ix   of   the   l inear   par t  of the 
system state equat ion.   This   leads  to   diff icul t ies   because a c r i t i -  
cal  matrix w i l l  no t   y ie ld  a pos i t ive   def in i te   so lu t ion  P of the 
Liapunov equat ion   for   any   pos i t ive   def in i te  Q. 

The next  block  in  the  f igure  represents  the  error  processor.  
The processor  used  here i s  the  Doolin and Showman "part ia l   proces-  
sor ,"  w h i c h  i s  based on an attempt  to produce  an  uncoupled  err'or 
signal  using  only  resolvers and analog summers. T h i s  processor i s  
described by 

r a 11 1 a13 I 

The next  block  in  the  figure  represents  the  compensator w h i c h  
i s  a lead-lag. The t ransfer   funct ion i s  

Vf (Tl + T 2 ) S  + 1 
E T 2 S  + 1 - = Gc(s) = Kc i =  @, 0 ,  @ (4  -4) 
i 

which i s  modeled as shown in  Fig.  4-2 i n   o rde r   t o   i den t i fy   t he  
state var iab les  w e a s i l y .  The state equation i s  i 
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KC = 2.685 010 VoltlRad 5 

T1 = 4.5 Sec 

T2 = 0.5 Sec 

Fig. 4-2  Compensator Model Identifying Compensator State Variable 

with  output   vol tage 

Vf = (L, + K (1 4- T ~ / T ~ ) E ~  i = @, 8, II/ i C (4  -6) 

The motor momentum wheel  block  comprises a sa tura t ion  and 
ideal   iner t ia   wheel .  The sa tu ra to r  i s  described  in  Fig.  4-3. 

f: 

v" = f (v f )  = 26 sat(V:/26) 
i 1 

V '  

(4 -7) 

Fig. 4 -3 Motor Saturator  Function 
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The wheel  can  be  configured as a torquer 

or  a momentum storage  device 

(4  -9) 

Assumptions ( 4 )  and ( 5 ) ,  which  uncouple the  ve.hicle  equations  allow 
them to  be integrated so that   the   vehicle  i s  described by a momen- 
tum balance and the  wheel momentum v i  i s  the  vehicle  input. Thus, 
the momentum configuration i s  used and described by the  block  dia- 
gram of F ig .  4-4 

1 Ft-Lb-Sec 
Km 13 Volt =m 
" - = 76.8 Sec 

Fig. 4 -4 Mo tor  and Momentum  Wheel 

yielding 

( 4  -10) 

The vehicle i s  simply  represented by a balance between wheel 
momentum vi,   corresponding  to  vehicle momentum components Ip ,  Iq, 
o r  Ir, and  Ihy the  corresponding  total momentum assumed t o  be 
cons tan t . 
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V 
p = "+h: I O 

V q =   - - + h e  e 0 

I (4-11) 

The final  block  (required  only  for  the  tracker  angle model) 
i s  the  Euler  block  described by 

~ = p + q  t e   SO+^ t e c o  

Q = q c O - r s @  (4 -12) 

Figure 4-5 presents  the combined model in  block form with  the 
angle model f o r  s tar  t rackers  1 and 2. 

The state equations below are a summary of the work above 
using  the  angle model and  assumptions 1-5. 

V V 

= ( - ~ + h ~ ) + t 8 s @ ( - $ f h ~ ) + t 8 c @ ( - ~ + h ~ )  v 
1 K 

v = - -  
@ T m v 0 + Tm f (urn + Kc (1 + >).m) 2 

( 4  -13) 
1 Kc= 1 u = - -  w " E 0 T O  2 0  2 T2 
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Torques;  and  Feedback  Path  b)  Based on Gimbal  Angle 
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1 K 
= - -  

ve T m ve + T m f (me + Kc (1 + 2 ) ~ ~ )  2 

1 Kc" 1 

T 2  me - e 2 e  
"2 

- - -  (u " € 

SO 
V 

$ = - ( - $ + h : )  ce +..(--+h;)  ce I (4-13)  
(cont.) 

where the   re la t ions   for  E O ,  €0, E+, A B 1 ,  A B 2 ,  Ay1, and Ay2 a re  
given  in  Fig. 4-5.  

The s ta te   equat ion i s  obviously  highly  nonlinear  and  nine 
d.imensiona1 with  the form 

x = F(x) . (4  -14) 

me analysis   requires   the  s ta te   equat ion t o  be of  the form 

x = Ax' + g(x')  . I  

x' = 0 . e 

To cast   the   equat ions  in   this  form we define  x' as 

( 4  -1 5 )  

x ' = x - x  e ( 4  -16) 
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where x, i s  the  equilibrium  solution, i . e . ,  F(xe) 3 0, and 

( 4  -17) 

g(x') = F(x') - Ax' 
The elements of A are complicated  functions of the  system 

parameters and the  equilibrium  values  of  the  att i tude  angle  vari- .  
ab les ,  O e ,  e,, 1c/e. These equilibria  are  given  approximately  as a 
l inear   func t ion  of the h i  where the  coeff ic ients   are   nonl inear  
functions of the commanded gimbal angles.  

0 

The A i j  f o r  Oe = 8, = +e = 0 are   - fa r  s impler  in  form than 
the  general  case.  Since (be, e,, a re   qu i te  small w e  believed 
tha t  i t  might not be necessary  to  use  the  general form. To cor- 
roborate   this ,  a pro ram that   calculates   the  e igenvalues  of A 
for  zero and  peak hi 's   over a range  of command angles was wr i t ten .  
The computat ional   resul ts   indicated  that ,   a t  wors t ,  d i f ferences  in  
the  respective  eigenvalues,   both  real  and  imaginary parts, occur 
in   t he   f i f t h   s ign i f i can t   f i gu re .  

i3 

The matrix A i s  required  for  the  solution of the Liapunov 
equation.'  In  the  course of solution it  became evident   that   the  
large  differences  in  magnitude  of various  elements of A caused 
numerical  problems  precluding an accurate  solution. To combat 
t h i s ,   t he   s t a t e  was reformulated  in a nondimensional form (x") , 
which yielded  an A that   permitted  accurate  solution of the 
Liapunov equation. Appendix A presents a detailed  description of 
the mode 1 derivation. 

The zero   o f fse t  (Oe = 8, = +e = 0) nondimensionalized  state 
equation i s  presented  in  Fig.  4-6 .  It is  t h i s  form t h a t   i l l u s -  
trates  the  l inear  uncoupling  achieved by using  the Ames "paired 
t racker"  model. It should  be  noted  that  the  complete  state  equa- 
tions  are  not  uncoupled. It is  for   th i s   reason  and because  of  the 
f a i l u r e  of l inear   ana lys i s   tha t  a nonlinear  analysis was performed. 
Simulation  results,   discussed below, substantiate  the  necessity of 
the  nonlinear  approach. 
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Fig.  4-6 Nondimensional State  Equations Based on Tracker 
Angle Model - Offset  Neglected 



Three o t h e r  models  were also derived. Two of these,  w h i c h  
were derived i n  t h e  hope of simplifying  the  analysis,   are  approxi- 
mations of the  basic model. The  t h i rd  i s  a simple  variation  that  
t r i e s   t o   m d e l  a l imit ing of voltage i n  the compensator.  Fig- 
ures  4-8, 4-9, and 4-10, present  the  block  diagram and s t a t e  equa- 
t i ons   fo r  each model. Blocks w h i c h  a r e  unchanged  from the  basic 
model (Fig. 4-5) a re  simply named.  Tbe basic model w i l l  f o r  s i m -  
p l i c i t y  be labeled AN ( a l l   non l inea r i t i e s ) .  

The f i r s t  model studied  ignores  the  conpensator  lag and t h u s  
t he   s t a t e   va r i ab le s  wi, thereby  reducing  the  dimensions of the 
s t a t e  from nine  to  six,(labeled 6 0 .  The lag  break,   l ike   that  of 
the  tracker  lag dynamics of assumption 2 , i s  bas ica l ly  beyond 
the  spacecraft  dynamic region. The approximate  compensator  trans- 
fe r   func t ion  'be- - ome s 

Gc(s) = KC(-rls + 1) (4-18) 

w i t h  model (Fig. 4-7) 

Fig. 4-7 Approximate  Compensator Model 

aad  equation 

Vf = KC(-r1ci + ci) , i = 0 ,  8 ,  7,9 (4-19) 

A s i x  dimensional s t a t e   g r e a t l y  reduced the  dinensions of the 
space  for J(Q) optimization, from 45 t o  2 1 .  The benefi ts  t h u s  
derived  are  discussed  in  Section 5. 
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Note : 

1) go, E,+ given  in  block above - l inear  functions of Q, 8 ,  1c/ 

2)  If block  only  t it led it i s  ident ica l  to block  in  exact model - Fig. 4-5 

Fig. 4-8 Motor  Saturation Only Nonlinearity -- MV 
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Fig. 4-9 Compensator Lag Neglected  Model -6D 
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The second model e l imina tes   a l l   nonl inear i t ies   except  motor 
sa tura t ion  and i s  labeled Mr. Thus i t  i s  i n  a l l  respects  but one 
( the  saturat ions)   the same as the  Doolin  and Showman model of [ 2  3 .  
Moreover, i t  i s  identical   in  regard  to  channel  uncoupling, which 
i s  the  essence of t h e i r  model. The motor voltage  saturation i s  
preserved  because i t s  small l inear   region seems to   i nd ica t e   t ha t  
i t  i s  the dominant nonl inear i ty .  

Final ly ,   there  i s  a var ia t ion  of the  basic model which  simply 
places a s a t u r a t o r   a f t e r  (E@, € 8 ,  E$ t o  reduce  the  high  voltage 
input   to   the  compensator; it is  labeled ANL. This model causes 
a la rge   reduct ion   in   e f fec t ive  damping (rate   lead)  and closely 
approximates  performance  with a DLU. This subject,  however, i s  
not   considered  in   the  present   s tabi l i ty   analysis .  

The simulation  results  are  discussed i n  d e t a i l   i n  Appendix B.  
Given a tracker  case and i n i t i a l   c o n d i t i o n s   f o r  which the  basic 
model has an asymptotically  stable  equilibrium,  there i s  a general 
s imi l a r i t y  of t r a j ec to r i e s  of the  various models.  That i s  to  say, 
the dynamics a re   bas ica l ly   the  same. 

There e x i s t ,  however, tracker  cases  for which the  basic model, 
the 6 - D ,  and basic model with error l imit ing (which a re   i den t i ca l  
in  the  feedback  path)  are  unstable,   but  for which the motor satura-  
tion  only model i s  s t ab le .  This phenomenon i s  discussed a t   l e n g t h  
in  Appendix B .  The important  fact  i s  tha t   th i s   def in i te ly   impl ies  
t h a t  a model based upon linearizing  the  feedback  path i s  not   va l id  
for   s tab i l i ty   ana lys i s .   In   fac t  i t  i s  coupling  in  nonlinear  feed- 
back, a s  opposed t o  i t s  nonlinear form, tha t  may cause  grave  dif- 
ferences  in performance  between this  approximation  and  the f u l l  
nonlinear model. 
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5 .  COMPUTATION - PROGRAMS,  PROBLEMS, RESULTS 

Formidable  computational  problems are encountered  in imple- 
menting  the  techniques  of  Section 3 .  In i t ia l ly ,   four   ind iv idua l  
tasks were foreseen: 1) generate n X n pos i t ive   def in i te  sym- 
metric  matrices Q; 2) solve  the Liapunov equation ATP + P A  = - Q 
fo r  P ;  3) search  the  state  space  for  the minimum of V(x)  on 
$(x) = 0 , x # 0 ; and 4 )  search  the Q space  for  the Qo t ha t  
maximizes J(Q) . In   the  ini t ia l   formulat ion,  i t  was assumed t h a t  
the problem  of  searching  the  space of parameters  generating Q 
would be solved by the  search  technique  of  task  3. 

Task 1, the  generation of a pos i t ive   def in i te  Q matrix, was 
achieved,  as summarized in  Appendix D,  p a r t   ( i i ) .  Generation  of 
each 9 X 9 posi t ive  def ini te   matr ix  Q requires   specif icat ion 
of 45 parameters which characterize  the  matrix,  and 37 matrix mul- 
t i p l i ca t ions   t o  form Q. 

Various  algorithms  for  the  achievement of task 2 ,  the  solu- 
tion  of  the Liapunov equation  (3-8), have  been presented i n  the 
l i t e r a t u r e .  A comprehensive evaluation of four  of  these  techniques 
appears  in [12 1 and in  Appendix D,  p a r t   ( i )  of t h i s   r epor t .  One 
conclusion of [12  J i s  that   the  method used  here  suffers  least  i n  
accuracy  deterioration  with dimension increase  while i t  suf fers  
most with  respect   to   increase of  computing t i m e  with  dimension. 
Methods of solving  the Liapunov equation  are a t  present w e l l  un- 
derstood so  tha t   t ask  2 was completed in   an   en t i r e ly   s a t i s f ac to ry  
manner. 

The th i rd   t ask  was by far   the  most challenging and required 
the most e f f o r t .  Development of the  search  technique  proceeded 
from f i r s t   t r y i n g  a gradient  search, which i s  described  in Appen- 
dix D,  par t   ( i i i ) ,   to   f ina l ly   deve loping   the  random search, which 
i s  out l ined  in  Appendix D,  pa r t   ( i v ) .   Desp i t e   a l l   c l a ims  made by 
various  workers who have investigated  gradient  search  procedures, 
a l l  of our e f for t s   in   th i s   a rea   tha t   u t i l i zed   pena l ty   func t ions  of 
var ious  sor ts  were inef fec t ive .  The gradient  procedure  reliably 
found the   t r iv ia l   g loba l   so lu t ion  of (3-16) or  it unreliably found 
a local  minimum, but   fur ther  tests were required t o  s ee   i f  i t  was 
the  desired  solution of (3-9). It was the  search  for   effect ive 
t e s t s   t ha t   l ed   t o   t he  development of the random search  procedure. 
Thus the  conclusion was reached  that  penalty  function  techniques 
and gradient  type  search  procedures  are  totally  inapplicable t o  
complex nonlinear,  high  order  problems. 
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The f u t i l i t y  of using  gradient  techniques  and  penalty  func- 
t ions became even more clearly  apparent when we considered  the 
4 5  parameter  search  for  the  optimal Q matrix, Qo. An analy t ica l  
gradient  could  not be derived  because J was no t   exp l i c i t l y -ava i l -  
able,  and a numerical  gradient would require  4 5  function  evalua- 
t ions (one for  each  single  perturbation of a parameter)  to estimate 
the   g rad ien t   a t  one point,  and  each  evaluation would require  one 
search  for  d .  Thus, one could  envision 4 5  X 20 = 900 minutes 
of computer time f o r  one gradient   calculat ion  for   the Qo search. 
[The gradient  procedure was using 20 minutes  of computing time to 
converge t o  a minimum of (3-16) , not  necessarily  the  solution of 
(3 -9 ) .  1 Those 4 5  function  evaluations would be more productive  if  

we  allowed  for  chance and good fortune, i . e . ,  i f  w e  used a random 
search  procedure  to  select  evaluation  points  rather  than  cluster- 
ing them about some arb i t ra ry   s ta r t ing   po in t   in   o rder   to   ca lcu la te  
a gradient.   This  reasoning  led  us  to  devote  almost  al l  of  our re- 
maining e f f o r t  t o  the development  of more e f f i c i e n t  random search 
procedures. 

An e f f i c i e n t  random search  technique which takes  advantage of 
the geometry  of the  s ta te   space was developed  and i s  discussed 
f u l l y   i n  Appendix D,  part  (iv).  This  search  procedure  produces 
resu l t s   wi th  a high  level  confidence, does not produce  the t r i v i a l  
solution,  has no scaling problems, requires  no gradient computa- 
t ions,  and accomplishes a determination of a i n  20 to  30 seconds, 
depending on how the   po in t s   f a l l ,  i .e .  , how  many actual  function 
evaluations and one dimensional  (bisection)  searches  are  carried 
out.  This  underscores  the  value of designing  the  technique t o  f i t  
the problem rather  than  forcing a problem t o   f i t  a technique. 

This inner  search, o r  search of the  s ta te   space,   has  been r e -  
solved  in   an  ent i re ly   sat isfactory way, largely  because  informa- 
t ion  i s  avai lable   in   the way of geometrical   structure  in  dealing 
with a co l lec t ion  of nes ted   e l l ipso ids ;  The search   as   f ina l ly   re -  
f ined i s  f a s t ,  dependable, and accurate.  

The outer  search,  or  search of the 4 5  dimensional  parameter 
space, which i s  de t a i l ed   i n  Appendix D, part (v) , has  not  been  de- 
veloped to  a completely  satisfactory  point,  not  only  because of 
the  high  dimension  of  the  parameter  space,  but  also  because  almost 
nothing i s  known about  the geometry  of this   space,   that  i s ,  the 
general  nature  of  the  functional dependence  of the volume J ( Q )  
on the  parameters which generate Q, and  because  of  the  primitive 
s t a t e  of the  ar t   in   global   search  techniques.  
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This  algorithm i s  t h e   f i r s t  known instance  of one random 
search imbedded in   another .  The extremely  efficient  "inner  search' '  
(Fig. 5-1) takes between 20 and 30 seconds on the IBM 360-75 to  
search  the  nine  dimensional OAO control  system  phase  space  for a 
bound on the volume estimate  provided by a spec i f ic   pos i t ive   def i -  
n i te   mat r ix  Q. The 30-second time is v a l i d   i f  5000 points   are  
examined whereas  the lesser times a r e  due to   an  "abort"   feature .  
This  feature  holds  the  last   best   inverse volume estimate (vol'l*) 
and  compares i t  with  the  v01-l  as  calculated a t  each randomly 
se lec ted   po in t .   I f   vo l -1  i s  greater  than  vol'l*  the  search i s  
aborted  since we are now looking a t  smaller volume estimates than 
our las t   best .   Since  each Q i s  generated by  45 independent 
variables  (for  the OAO) in  the  ' 'outer  search"  (Fig. 5-l) , runs of 
one hour  or more  on the Grumman IBM 360-75 and the IBM 360-95 a t  
the   Ins t i tu te   for  Space Studies  in New York City were required t o  
obtain  estimates  of  the domain of a t t r a c t i o n  which represented 
maximal quadratic estimates with some degree  of  confidence. 

The need for  research  into  effective  search  techniques i s  a 
def ini te   future   requirement   as  i s  evidenced by the   e f for t   pu t  
fo r th   i n   t h i s   s tudy .  It looks  as  if   general   procedures  to  ac- 
complish t h i s  w i l l  not   suff ice  and  the  search  technique w i l l  be a 
function of the problem i t s e l f   o r  of a general  class  of  problems. 

The computer  program was developed  primarily  in FORTRAN IV 
while some subrout ines   are   in  machine language. The machines 
u t i l i z e d  were the IBM 360 series, models 75 and  95. The e n t i r e  
program consists  of  approximately 1800 cards.  The input  consists 
of  between 6 and 16 cards  depending on the program option  selected,  
while  the  printed  output  consists of the  inverse volume (a  carry- 
over from ini t ia l ly   using  gradient   minimizat ion  rout ines)  of the 
op t ima l  estimate of the domain of a t t r a c t i o n .  There i s  interim 
output  such  as  the  matrix Q and i t s  parameters,  the  matrix P,  
the  performance  index E, the  value of the Liapunov function V, 
and i t s  time de r iva t ive   a t   t he   po in t  where ,!, i s  defined 
whenever there i s  an improvement in  performance E. 

The d e t a i l s  of  the computer  programs are   included  in  Appen- 
dix G. A special  form  of these programs i s  included  in Appendix F 
where the Liapunov equation i s  not  solved  for P from a posi t ive 
de f in i t e  Q but  instead a pos i t ive   def in i te  P i s  chosen t h a t  
does not   necessar i ly  imply t h a t  Q w i l l  be pos i t i ve   de f in i t e .  
This program j u s t  checks Q for   posi t ive  def ini teness   before   pro-  
ceeding. A s  many a s  2400 t r i a l   cho ices  of   posi t ive  def ini te  
P-matrices have  been made consecutively  without a pos i t ive   def i -  
n i t e  Q occurring. 
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The experimental   resul ts  of the program based on select ing 
the Q matrix  are  presented  for two systems. The f i r s t  i s  the 
nine  dimensional  complete  system,  while  the  second i s  a six dimen- 
s ional   vers ion of t he   f i r s t   w i th   t he  compensator lag  dynamics 
eliminated  because of t h e i r  much h igher   ra te  of response. There 
i s  nevertheless a basis  of comparison  of  the two systems i n   t h e i r  
respective  angles  and  associated momenta. 

The ove r -a l l   r e su l t  of the  computation w a s  that   the  estimates 
were w e l l  into  the  nonlinear  region of the  system.  That i s ,  the 
angular   error  which  causes motor sa tura t ion  i s  approximately twenty 
arc  seconds,  whereas  our  results  indicated  that w e  were closer   to  
ten  minutes of a rc   in   our  estimates of the  angular   s ta te  l imits  of 
the domain of a t t r a c t i o n .  While the  ten  arc  minutes looks good 
with  respect   to   the motor sa tura t ion   e r ror   s igna l ,  we observed  con- 
s is tent   s table   behavior  of the  system  during  simulation  runs from 
f i f teen  degrees  of a t t i t u d e   e r r o r   f o r  many choices of i n i t i a l   s t a r  
tracker command gimbal  angles and i n i t i a l   a n g u l a r  momenta of  the 
sys tem. 

We were for tunately  able   to   use  the IBM 360/95 a t  the NASA 
Goddard I n s t i t u t e   f o r  Space Studies (ISS).  This computer i s  much 
faster  (approximately  ten  times)  than  the IBM 360/75  which we had 
been  using a t  Grurmnan and has a core 10 times larger.  This  enabled 
us  to  use a 300,000 point  inner  loop  state  space  search,  rather 
than  the 5000 point  search  being  used,  in  order  to  attain  confi- 
dence in   the  val idi ty   of   the  random search  technique  results.  The 
r e s u l t s  of the 9 dimensional  search  as  run a t  the ISS a re  shown i n  
Table  5-1. These resu l t s   a re   on ly  a small portion of t he   t o t a l  
r e s u l t s  of computerrunsat  both Grurmnan and ISS .  The best   inverse  
volume i n  which there was  some degree  of  confidence was 0.488 X 1035 
a t  run #6, which corresponds  to  physical   variable limits ( a f t e r  
maximal eigenvector  projections on unscaled state coordinates as 
shown in  Appendix E)of:  = 2.48  min., Ivol = 0.181  f t- lb-sec,  
luo 1 = 1980 vo l t s ,  = 5.91  min., l v ~ l  = 0.342 f t - lb-sec,  
l w ~ l  = 941 vo l t s ,  ]+ I  = 8.98  min., Iv+l = 0.452 f t - lb-sec,  
lu 1 = 1410 v o l t s .  It should be noted  that   the  angle  intercepts 
107, 18 1 , and were diminished by fac tors  of  approximately 
three from those  obtained  with  previous  5000-point  searches, due 
t o  the more conservative  influence of the  larger number of points 
used in  the  inner-loop  search. These r e s u l t s  were obtained  with a 
quasi-diagonal Q matrix, ze ro  i n i t i a l  momenta (Ih:= Ih:=  Ih; =O), 
sin(Ylc - ~ 2 ~ )  = 0.1,  B l c  = 0 (quasi-diagonal A) , and 

@2c = - ~ r / 6  radians  (run #6, Table  5-1). 
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Table 5-1 

TAEBUDD mS_uLTS OF Q-eTRIX SEARCH PROGW AT THE INSTITUTE FOR SPACE  .STUDIES 

1* 

2* 

3* 

4* 

5* 

6* 

7* 

8* 

9*** 

10- 

11*** 

12**** 

T o t a l   T r i a l s  

- 150 3 

- 2500 62 

1019  105 

1000  14 

2000 16 

2473 72 

1022  118 

1872  136 

29 38 

453  61 

1000 2 

1000 3 

14518 

.606 x 

( n o t   p r i n t e d   o u t )  

.599 x 

.497 x 

.892 X 

.488 x 

.187 x 

.202 x 

.134 x 

. l o 5  x 

abor t   cond i t ion  t 

abor t   cond i t ion  t 

1.1217 

1.1480 

1.1592 

1.1566 

1.1650 

1.1563 

1.3757 

1.3435 

1.6042 

1.6340 

1.6666 

1.6666 

5000-pt.  search,  quasi-diagonal 
Q (q-d-Q); job aborted - excessive 
output  
5000-pt.  search, q-d-Q, reduced 
output   run 

300,000-pt.  search  from t h e  b e s t  
point   of   run 2, q-d-Q ( a l l  runs  
from h e r e  on a r e  300,000  pts) 
S t a r t e d  from t h e  bes t   po in t   o f  
run   3 ,   fu l l -Q 

Continuation  of  run 4 i n  random 
# gen. , ful l -Q 
q-d-Q from b e s t   p o i n t   i n   r u n  3 
( rea l ly   an   ex tens ion   of   3 )  
q-d-Q, s t a r t  from hi = 1, 
e = G ~ = o  
j 

S t a r t  from t h e  b e s t   p o i n t   i n  
run  3 ,  q-d-Q 
S t a r t  from t h e   b e s t   p o i n t   i n  
run  3 ,  q-d-Q 
Same as run 9 except   ful l -Q 

q-d-Q, s t a r t e d  from  the  best  
p o i n t   i n   r u n  3 

q-d-Q, s t a r t e d  from t h e  b e s t  
po in t   i n   run  3 

* 
h .  = 0,  ylc = -yPc = .05017822 r a d ,  Blc = 0, B2c = -1r16 

** 
hi = 0, ylc = -y2c = ~ 1 4 ,  Blc = 0, B2c = -816 

h .  = 0, ;ylc = -ypc = ~ 1 4 ,  Blc = - B2c = ~ 1 6  

h i  = 111500 (half  wheel  speed)+,-,+, ylc = - y2c = .05017822, Blc = 0, B2, = -816 

h i  = 0.2/1500  (1110 w h e e l  speed)+,+,+, ylc = - y2c = .050178, Blc = 0, Bgc = - ~ / 6  

i f  t h e  best   Liapunov  function i s  < t he  "01-' i s  set  = 1051  and P* 
t hus  becomes - 513 

** 
**** 
*** 
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The inclusion of a fu l l  Q-matrix, addition  of  nonzero  ini- 
t i a l  momenta, the  inclusion  of PI, # 0, and increasing  the 

a s   i l l u s t r a t e d   i n  Table 5-1. Resul ts   indicate   high  sensi t ivi ty   to  
va r i a t ions   i n  y l c ,  y2c, PI,, and i n i t i a l  momenta. The case of 
B l c  = 0 gives a quasi-diagonal A matrix,  thereby  decoupling  the 
system, a t   l e a s t   i n   t h e   l i n e a r   p a r t .  The nonlinear p a r t  is  s t i l l  
coupled  through  the r o l l ,   p i t c h ,  and yaw channels. The most 
severe  degradation of the  system  occurred when i n i t i a l  momenta 
were introduced  to  even  one-tenth of  wheel capacity.  

sin(y1c - Y2c) to  values > 0 .1  cause  degradation of the   vol-I  

A 6 dimensional  approximation  of  the 9 dimensional  problem 
was also  programed  but  with a 100,000 random point  inner  loop 
search. The bes t   r e su l t s  were obtained  for  the  case f31, = 0,  

a vol-1 estimate = 0.562 X 1025, with  projected maximum values 
(not  occurring  simultaneously)  of  the  physical  variables  as  fol- 
lows: 101 = 0 . 1 4  min., 101 = 1 0 . 4  min., 1 q 9 1  = 8 .30  min., 
Ivol = 0.050 lb-ft-sec,  lvel = 0 . 4 8  lb-f t -sec,  Iv+l = 0.39  lb-ft-sec 
(see  Table  5-2). 

B 2 C  = - ~ r / 6  rad ,   s in(y lc  - yzC) = 0.1,  hz = hg = h$ = 0, giving 

A comparison  of the 6 and 9 dimensional  results show t h a t  
both programs exhib i ted   the i r   bes t   resu l t s   for   the   case   o f  1) quasi-  
diagonal  Q-matrix, 2) z e r o   i n i t i a l  momenta (Ih? = Ih: = Ih? = 0), 
3) sin(ylC - yzc) = 0.1, 4 )  PI, = 0 ,  and 5) BzC = - 7r/6 rad.  
The 6 dimensional  results  provided a b e t t e r  le I i n t e r c e p t   e s t i -  
mate of 1 0 . 4  min. than  the 9 dimensional  estimate of 5.91  min.; 
however, the 9 dimensional program provided  surprisingly  better 

and 1 q 9 1  estimates ( 2 . 4 8  min. compared t o  0 . 1 4  min. for  I @  I , and 8 . 9 8  min. compared to  8.30 min. fo r  1 +I) . Perhaps 
the   f a i lu re  of  the 6 dimensional program to  provide  c lear ly  
superior estimates i n  spite of the  smaller  dimension  of i t s  Q 
parameter  search and g rea t e r   r e l a t ive  number of t r i a l s  i s  due to  
the   f ac t   t ha t   t he   e f f ec t  of a 100,000 point   search  per   t r ia l   in  
6 dimensions i s  approximately  equivalent  to a 32 mill ion  point 
search  in 9 dimensions; 32 million would be  very  conservative com- 
pared  with  the 300,000 point  search  actually  used  in  the 9 dimen- 
sional  case.  

The dol la r   cos t  of obtaining an estimate of the domain of a t -  
t rac t ion  is  of   in te res t   for  comparison with  simulation. Only 
nominal values  of  the  cost  per computer usage  hour are  used  since 
these  costs   f luctuate   as  a function  of  total   usage  hours,  t i m e  of 
day,  order of p r i o r i t y ,   e t c .  The cost  of obtaining  an estimate of 

38 



1* 

2- 

3* 

4- 

" 

SU"4RY c 

Tria l s  

-., aooo 

-., 3000 

4200 

4000 

T i m e  
(Min) 

120 

60 

60 

60 

Table 5-2 

RLJ?S AT ISS FOR 6 DIMENSIONAL MODEL 

v01-l  
- 

.562 x 10 25 

.261 x 

.225 x 

P* 

1.237 

1.471 

1.318 

-" 

Coments 

100,000 point search, 

P* = log(vol)-1/20 

II I 1  

II II  

v01-l too  S l n a l l  t o  com- 
pute  without  rescaling 
problem 

f.k 
ho - 0 ,  ylC - -yPc - T14,  B,, - 0 ,  B~~ - -016 rad 

."r 
ho - 111500 (+, -,+), ylc - --y2c - ,05017822  rad, B,, - 0, 
B2, = -16 rad 

t h e  domain of a t t r a c t i o n  i s  found f o r  a given se t  of i n i t i a l  mo- 
menta (hp = 0) and a pa r t i cu la r  set of commanded gimbal  angles 

data  are presented as runs #l through #6 in  Table 5-1. The bes t  
estimate (run #6) i s  used as the example, ( i t  must be noted  that  
run #6 is  a continuation  of  run #3  which in   t u rn  i s  a continuation 
of  run  #2).  Therefore  the  cost  should  be  the  dollar  value  asso- 
c ia ted   wi th   the  sum t o t a l  of computer hours  used, which i s  approxi- 
mately  four.  Since  the'IBM  360/95  nominally  costs $1000/computer 
usage  hour,  the  cost i s  approximately  $4000/estimate.  Since w e  do 
not  wane i t  to  appear  that  any  issues are being  clouded by the 
p a r t i c u l a r  parameter set  mentioned,  and s ince   t h i s  i s  possibly  not 
the  usual computer, w e  adjust   our estimate by a f ac to r  of t en   to  
the  conservative  side, as a r e s u l t  of  which our  cost i s  brought up 
t o  $40,00O/estimate/parameter se t .  Let us  get  some " fee l"   for   the  

(?Ic = - Y z c  = 0.05017822 rad,  PIC = 0 and B2c = - .rr/6). These 



number of points   in   the state space  that  have  been examined during 
these  four  hours  of computer time. With the  special   abort   feature  
of  the program,  which r e i n i t i a l i z e s   t h e  state space  search whenever 
the volume of  the estimate corresponding  to Liapunov function V 
becomes smaller than  the  previous  last   best  volume estimate, a 
300,000 point  state  space  search  takes  approximately  five  minutes. 
I f  w e  say  that   for   only  half   the  time w e  a r e  examining 300,000 
point/5  minutes and the  other time we are doing  nothing,  then we 
are   evaluat ing 72 X LO5 points   in   this   over-al l   search.  Hence 
our  estimate i s  approximately O .5k/point/parameter set .  

S ince   s tab i l i ty   ana lys i s  by simulation i s  the  major means of 
doing  the same job  that   th is   a lgori thm is doing, a comparison  might 
be  undertaken to   ge t  a dol lar   es t imate  of the  cost  of doing  such 
an  analysis  with a sat isfactory  degree of confidence  in  the  results.  
Since w e  have a nine  dimensional  state  space,  choosing a l l  combina- 
t ions  of the maximum value, minimum value, and zero  for  each  of  the 
s t a t e   va r i ab le s  would y ie ld  a hypercube g r id  of 39 - 1 (excluding 
the  or igin)   s ta te   points   ( ini t ia l   condi t ions from  which t r a j ec to -  
r i e s  should be run).  Again, t h i s  i s  f o r  a s ingle  set of momenta 
and cormnanded gimbal  angle  parameters. On the  average, a t r a j e c -  
tory  in  state  space  takes  approximately  three  to  five  minutes of 
IBM 360/75 machine time.  If w e  estimate the IBM 360/75 machine 
time  cost t o  be  $500/computer  usage  hour,  the  cost  to  run  this 
simulation from  which s t a b i l i t y  of the  system i s  to  be ascertained 
and  in which we think one might place a high  degree of confidence 
i s  $500,000,  which i s  $25/point/parameter  set.  In  these  estimates 
w e  have  taken 39 - 1 to  be 20,000, we have assumed the  three 
minute/run  figure, and we have ignored  the  cost  of  plotting and 
"eye ball ing"  the  runs.  

While it  i s  admit tedly  t rue  that  performance  information  re- 
s u l t s  from simulation,  the problem a t  hand i s  s t a b i l i t y   a n a l y s i s  
of  the  system and not  the  accumulation of other   val id   but   superf lu-  
ous data.  

A s  an example of the  time  and  dollar  constraints  that  are 
placed on a project  and how they  manifest  themselves  in what we  
bel ieve  to  be a reduction  in  confidence  in  the results i n  terms of 
stabil i ty  analysis,   consider  the  following.  For  the  actual OAO, 
the   to ta l  number of s imulat ion  runs  with  var ia t ion  in   a l l  parame- 
t e r s  was 20,000.  Recall  that 20,000 was what we believed would be 
a reasonable number of runs  for a single  parameter  set .  Hence the 
degree of  confidence in   t he   r e su l t s  must be considered  small. 
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A conclusion from this  experimental work i s  that  the  algorithm 
i s  a feas ib le  method for   conduct ing  the  s tabi l i ty   analysis  of a 
high  order  system. It i s  cost   efEect ive compared to   s imulat ion,  
but i t  i s  probably  too  conservative  in i t s  estimates although it  
did  give  resul ts   wel l   in to   the  nonl inear   region  of   operat ion of 
the  system.  Finally, it i s  c lear   to   us   tha t  more e f f i c i en t   s ea rch  
techniques  are a requirement  for  any  future work in   t h i s   a r ea   s ince  
t h i s  was ac tua l ly ' t he   b igges t   r e s t r a in t  on our  over-all  progress 
d.uring this   s tudy 
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6.  CONCLUSIONS 

The algorithm  developed and  examined in   th i s   s tudy  i s  a fea- 
s ib le   so lu t ion   to   the  problem  of estimating  the domain of a t t r a c -  
t i on  of  an equi l ibr ium  s ta te  of a complex nonlinear  physical 
system. I ts  fur ther  development in to  a p rac t i ca l  tool i s  l imited,  
however , i n  two ways. 

Firs t ,  there is  the problem  of  determining  the  subset  of  sys - 
t e m s  within  the set of quasilinear  asymptotically  stable  systems 
f o r  which a quadratic or e l l ipso ida l   es t imate  of the domain of 
a t t r a c t i o n  i s  adequate.  Since  the  nonlinearities  are  not  accounted 
for  in  the  geometric  shape  of  the estimate it i s  conceivable  that 
there   are  systems fo r  which one cannot  find a suitably  large  family 
of e l l ipsoids   within  the domain of a t t r a c t i o n  such t h a t   a l l   t r a j e c -  
t o r i e s   cu t  them in  the inward direct ion  as   required by the problem 
formulation. The use of Lur6-Liapunov functions may be more s u i t -  
able  in  these  cases,  but  the  computational problems become more 
d i f f i c u l t  . 

Second, t he   s t a t e  of t h e   a r t  i n  search  techniques must be  sub- 
s t a n t i a l l y  advanced so that  the  maximization problem  can be e f fec-  
t i ve ly  and eff ic ient ly   solved.   For  a system  of  dimension n the 
maximization  problem i s  of  dimension  n(n + 1 ) / 2 .  Thus, for  prob- 
lems of reasonable  complexity  gradient  techniques must be abandoned 
in  favor  of random search  techniques  because more information can 
be gathered,  in a global  sense, by the same ef for t   requi red  t o  de- 
termine a local  piece of information  ( the  gradient) .  The problem 
i s  further  complicated  because  the  objective  function i s  s t a t e d   i n  
terms of  the  solution of a minimum problem  which is  dependent upon 
the  variables  over which the  maximization  occurs. Thus the prob- 
l e m  i s  one of high  dimension and unknown, complex geometry. 

Despite  these  hurdles,  the  continued development  of the  algo- 
ri thm  remains  attractive  because it promises t o  provide a too l  
t h a t  can provide  higher  confidence  stability  information  for com- 
plex  nonlinear  systems  than  can  simulation  (the  only  other s i m i -  
l a r l y   g e n e r a l   t o o l )   a t  lower cost .  This conclusion i s  based on a 
very  conservative  comparison, i . e . ,  a l l   e f f o r t s  were made to   favor  
simulation.  For a given  confidence  level  the  cost of obtaining 
the result  by simulation i s  two orders of magnitude more expensive 
than  the  cost of ut i l iz ing  the  a lgori thm. 

In  the  process of developing  the  algorithm,  the  inapplicability 
of gradient  searches and penalty  function  techniques  to  the minimum 
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problem became painful ly   c lear .  They are inappl icable   for   three 
reasons: 1) the  solution  sought i s  the   loca l  minimum neares t   in  
value  to   the  global  minimum (a t r i v i a l   s o l u t i o n ) ;  2) the  surface 
being  searched  has many minima; and 3) the  re.lative  ranges  of  the 
funct ion  to  be  minimized  and the  penalty  function are not known 
a p r i o r i .  The global minimum acts as a grand   a t t rac tor  and any 
attempt  to "mask i t  from view",  introduces a new  unknown local  mini- 
mum or   r equ i r e s   t o t a l  knowledge of the  surface around the  or igin.  
The  many loca l  minima repeatedly  trap a gradient  search and the 
r e s u l t  must be c e r t i f i e d  by other means. The lack of knowledge 
about  the  relative  ranges  of  the two functions makes the  choice  of 
penalty  constant  almost  impossible  without  excessive  additional 
computation  equivalent  to random searching. This factor  and the 
need  for  another means of cer t i f ica t ion   led   to   c rea t ion  of a very 
e f f ec t ive  random search  technique  that   uti l ized  the known geometry. 
The result ing  conclusion i s  t h a t   f o r  complex problems, random 
search i s  more a t t r a c t i v e  and effect ive  than  gradient   search,  and, 
i f   a t   a l l   p o s s i b l e ,  known geometric  facts  should be  used in   s t ruc-  
tur   ing  the  search.  

In  the  process of developing  the  system model it was  shown 
that   the   choice  of   s tar   t racker  model d i rec t ly   a f fec ts   the  com- 
p lex i ty  of the   s tab i l i ty   ana lys i s .   Fur ther ,   l inear iza t ion  of the 
star  tracker-error  processor  combination  introduces  substantial 
errors   in   both magnitude  and sign  of  the  approximate  error  signals. 
This i s  apprently  the  reason why the Popov approximation  (linear 
p a r t  p lus   s a tu ra t ion )   f a i l s   t o   r ep resen t   t he   s t ab i l i t y   p rope r t i e s  
of  the  system. ( I t   i n d i c a t e s   s t a b i l i t y  when the  system i s  un- 
s t ab le . )  The lesson  learned is  tha t  one must be careful   in  model- 
ing a complex nonlinear  system and must resis t   the   temptat ion of 
s e t t l i n g   f o r  an ana ly t i ca l ly   a t t r ac t ive  approximate 'model u n t i l  i t  
has  been  proved  adequate  to  the  task. It i s  not a t   a l l   c l e a r   t h a t  
the adequacy  can be proved  without  analyzing  both  the  complete 
model and the  approximation,  thus  negating  the  value of the  approxi- 
mation. 

The Popov approximation was studied  in  connection  with  the 
use  of Lur6-Liapunov funct ions  to   obtain an improved estimate of 
the domain of a t t r a c t i o n .  It  w a s  found that  the  frequency domain 
techniques are not   suf f ic ien t ly  w e l l  developed to  permit  the com- 
plete s t a b i l i t y   a n a l y s i s  of  the  approximate model. Only the spe- 
c i a l   ca se   i n  which the  three  channels  are uncoupled  could be car- 
r i ed   ou t .  It a l so  became apparent  that  computational  aids  are re- 
qui red   to   es tab l i sh   the   pos i t iv i ty   p roper t ies   for   the   modi f ied  
system  functions when the  system i s  nonacademic, i . e . ,  a s  complex 
as   the one studied  here.  
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In the  formulation  of  the  Popov  model  more  respect  was  gained 
for  the  prosaic  but  ubiquitous  block  diagram.  Formulation  of  the 
model  from  the  block  diagram  is  easy  compared to the  laborious 
task of formulating  it  from  the  state  equations.  The  lesson  here 
is  not to follow  the  deceptively  simple  prescription of matrix 
manipulations  until  the  engineer's  intuition  has  first  been  exer- 
cised.  It  has a place  even  in  the  world of high  order  nonlinear 
state  equations. 
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APPENDIX A 

DERIVATION OF THE SYSTEM MODEL AND APPROXIMATIONS 

The OAO i s  a cylindrical   structure  of  octagonal  cross  section 
designed  to accommodate a wide va r i e ty  of  astronomical  experiment 
packages.  This  attitude  control  system  has  four modes of opera- 
t i on :   i n i t i a l   s t ab i l i za t ion ,   acqu i s i t i on  of the  sun  l ine and  then 
ro l l   search   to   acqui re   the   gu ide  stars; open loop s l e w  t o  a com- 
manded at t i tude;   coarse   point ing  control ;  and fine  pointing con- 
t r o l .  This  appendix i s  concerned  with  the  coarse  pointing mode, 
which u t i l i z e s  a high  gain  nonlinear  system  capable  of  reducing 
i n i t i a l   a t t i t u d e   e r r o r s  of 8" t o  a range  of 2 t o  5 minutes 
of a r c  such that   the   f ine  point ing system can hold  the  required 
a t t i t u d e   t o  +15 seconds  of a r c   f o r  up t o  50 minutes. (See 
[13, 141 f o r   d e t a i l s . )  High system  gain and nonl inear i t ies  com- 
bine t o  make the  determination of coarse   point ing  s tabi l i ty   very 
d i f f i c u l t .  

Fu r the r ,   i n s t ab i l i t y  of the  coarse  pointing mode can destroy 
success of the  mission.  Since  observations and corrections can 
only be made a t   t h ree   c lose ly  spaced  ground s ta t ions ,  an ins ta -  
b i l i t y  can go unobserved for  almost  an  hour. A tumbling in s t a -  
b i l i t y  w i l l  cause  the  control  system  activity  to  deplete  the  stored 
e lec t r ica l   energy .  It  w i l l  also prevent  the  solar  cell   arrays 
from recharging  the  bat ter ies  and  cause  the  trackers t o  h i t   t h e  
gimbal s tops  thus  losing  the  references  and  attitude  information. 
The remainder  of this   presentat ion i s  devoted t o  developing  the 
system model f o r   t h e   d i f f i c u l t  and important problem  of  determin- 
ing   t he   s t ab i l i t y  of the  coarse  pointing mode.  The system  block 
diagram of the  coarse  pointing mode i s  shown in  Fig.  A - 1  with  the 
signals  at   each  block  of  the  three  channel  system  explicit ly  iden- 
t i f i e d   a s  a three  vector.  

The primary  sources  of  mechanical  energy  in  the  coarse  point- 
ing mode a re   e l ec t r i ca l ly   d r iven  momentum wheels. The primary 
sensors  in  the  coarse  pointing  att i tude  control  system  are a set 
of  gimbaled s ta r   t rackers   tha t   t rack   se lec ted   ce les t ia l   re fe rences  
(guide  s tars)  and read  out gimbal  angle  errors. These e r ro r s   a r e  
the  differences between the  gimbal  angles when the  vehicle i s  on 
target (commanded gimbal  angles)  and  the  actual  gimbal  angles re- 
quired t o  maintain  the  guide  star  in  the  center of the  s tar   t rack-  
e r ' s  f i e l d  of  view. 
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The ac tua l  OAO has  six  gimbaled star trackers and  uses  from 
two t o  six s ta r   t rackers  a t  a time; however, the  "paired-tracker" 
system  devised by Doolin  and Showman [l, 2 1  has  only  the  four star 
t rackers  mounted on the  sides  of  the  vehicle  and  uses a p a i r  a t  a 
time. The simplif icat ion  in   error   processing and system  design/ 
analysis  of the  "paired-tracker"  system i s  achieved by aligning 
the  outer gimbal  axes  of a l l   four   t rackers   wi th   the   vehic le   op t i -  
ca l   o r   ro l l   ax i s .   Th i s  is  the  system  that w i l l  be modeled here.  

Our a t t en t ion   i n   t h i s  appendix is  directed toward the  deriva- 
t i on  of  the  system model. It  w i l l  be  demonstrated that  the  choice 
of  the model has a d i r e c t  material e f f e c t  on the  degree of d i f f i -  
cu l ty  of t he   s t ab i l i t y   ana lys i s .  The basic  block  diagram of the 
system i s  given  in  Fig. A-1  and the model w i l l  be  developed i n  
s igna l  flow  sequence  beginning  with  the s t a r   t r acke r s .  

(:i ) 
v i  Jets, 

Compensation Motors, Vehicle 
-Networks  Voltages and  Wheel ' Dynamics 

Momenta Body Rates 
Wheels or 

1 
€6 
'I  € e  Error ( 2 ; )  Star 

Error Processor Gimbal  Angle 
Signals  Errors 

1 & 2  

Euler  Angles 

* 0 2  - 4 Trackers 

Trackers 1 & 2 
Commanded 
Gimbal  Angles 

Y l c   B l c  2c B2C 

Fig. A - 1  Basic System Block Diagram 
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To def ine  the  s tar   t racker  model we  begin by establ ishing  the 
coordinate  system  of  Fig. A-2 .  The coordinate  system  subscript r 
(reference) i s  assumed t o  be iner t ia l ly   f ixed   wi th   the  X r  coordi- 
nate  axis  being  the  l ine  of  sight  to  the  target  star,  and the 
Yr, Zr axes are i n  a plane  perpendicular   to   the  l ine of s igh t  t o  
the target star such  that   the  angles 0, e ,  ?(/ are zero when the 
vehicle i s  on t a rge t .  The coordinate  system  subscript b (body) 
is  a l igned   wi th   the   p r inc ipa l   iner t ia   ax is   (cont ro l   axes)   o f   the  
vehicle,   with  the Xb axis  being  the  vehicle  optical   axis.  The 
Euler  angles @, 8, ?(/ are, respec t ive ly ,   the   ro l l ,   p i tch ,  and yaw 
angles  with  respect  to  the  reference  coordinates.  (The convention 
here i s  that  vectors  denoting  coordinate frames are upper  case, 
components of a vector  lower  case.) Thus the  re la t ionship of the 
reference and body coordinates i s  given by the set  of ro t a t ion  
transformations R,, Re, Rq, 

'r 

Y r 

Z L r  

where 

viz. , 

0 0 

C @  - S a  

S @  CO 

0 se  

1 0 

0 ce 

i 

(A") 
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b - body coordinates 

r - reference  coordinates 

+ - roll 
8 - pitch 

JI - yaw 

8 

ZTR 

\ 
\ 
\ 
\ * 

TR - TRACKER REFERENCE 

T - TRACKER OPTICAL AXIS 
B - I N M R  GIMBAL ANGLE 
7 - OUTER GIMBAL ANGLE 

Fig. A-2  Definit ion of Coordinate Systems 
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For  each s t a r   t r acke r  w e  construct a coordinate  system  sub- 
s c r i p t  TR ( t racker   reference)   in  which ZTR i s  aligned  with  the 
tracker  outer gimbal ax is ,  YTR i s  aligned  with  the nominal inner 
gimbal ax is ,  and XTR i s  aligned  with  the nominal tracker tele- 
scope  axis. The coordinate XT i s  the  actual   t racker   opt ical  
axis ,  and the  angles y ,  I3 are   the  outer  and inner  gimbal  angles. 
The angle a is  the  rotat ion  about   the  t racker   opt ical   axis .  
Thus the  re la t ionship between the  tracker  and  the  tracker  reference 
coordinates i s  given by the  rotation  transformations G, Rp,  %, 
viz  . , 

'T 

yT 

'T 

where 

= RaRpRr 

L 

0 

Col 

- s a  

0 

1 

0 

SY 

CY 

0 

'TR 

'TR 

'TR - 

0 

.Sa 

ca 

- SB 

0 

CB 

0 

0 

1 

The re la t ionship  of a given  tracker 
ordinate  system  to  the  vehicle  coordinate 
l inear  transformation Tn, i . e . ,  

(A-3) 

(A-4) 

(no.  n) reference  co- 
system i s  given by the 
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r 

(A-5) 

where 

- 0  0 1  

T2 = -1 0 0  

- 0  -1 0 -  

- 0  0 1 ’  

Tg = 0 -1 0 

- 1  0 0 -  

- 0  0 I ’  

T4 = 0 1 0  

. -1 0 0 -  

The s t a r   t r acke r  mode1 w i l l  now be derived by assuming perfect  
tracking and in f in i t e   d i s t ance  from the   s ta rs .   In   th i s   case ,   wi th  
~ = e = q , / =  0,  the connnanded gimbal  angles  give  the  coordinates 
of the  uni t   vector   a long  the  l ine of sight  to  the  guide star in  
the  reference  coordinates, i .e.,  
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" - 
X 

0 

0 = T RT < RT 

1 r 

'r n Y c  c c 

- 'r - 

.-b 

a 
nJ 

where  superscript T denotes  transpose. However, i f   t h e  body 
undergoes a ro ta t ion  of @, 8, then  the  actual  gimbal  angles 
descr ibe   the   l ine   o f   s igh t   in  body coordinates, i .e . ,  

- % -  
'b 

- 'b - 

nJ 

nJ 

T T T  = TnR,RpRa 

and i t s  description  in  reference  coordinates i s  

S ince  the  l ine of s igh t   to  
nates w e  have 

T RT $ RT a n y c  c c 

the   s t a r  i s  f ixed   i n   i ne r t i a l   coo rd i -  

= R ~ R ~ R , T ~ ~ R ~ R ~  (A-10) 

From t h i s  set of three  equations we obtain two equat ions  re la t ing 
the  actual  and commanded values  of B and y .  The e r r o r  AB, Ay 
is  defined  to be the  difference between corresponding  actual  and 
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commanded values.   In  the  notation  of Doolin  and Showman [l, 21, 
the  angles B and y are def ined  to  be the  negatives  of  those 
defined  here. With this  taken  into  account,   the  equations  de- 
f ining A B ,  Ay for  the  four  trackers are given  in   Fig.  A-3b. 

The tracker model can a l s o  be derived by not ing   tha t   the   ro-  
t a t iona l   r a t e  of  the body wi th   respec t   to   iner t ia l   space   in  body 
coordinates is  given by 

% =  

P 

9 

r -  

(A-11) 

where p, q, r are   the  rotat ional   ra tes   about   the body axes  xb, 
Yb, zb. Thus t he   ro t a t iona l   r a t e  i n  reference  coordinates i s  
given by 

Sz r = R,ReRQ1;2b . (A-12)  

However, the  tracker  coordinate  system i s  a l so   i ne r t i a l ly   f i xed  
and the   ro t a t iona l   r a t e  of the body i n   t h a t  system i s  given by 

'TR 
" - 

y - a  SB 
. .  

cBcy -sy 0 

CBSY cy 0 

-sB 0 1  

(A-13)  

in   the  t racker   reference system. In  the  reference  system  this i s  
given by 

'r = R?+bRBR@TnSzTR 

and  thus 

(A- 14) 

(A -1 5 )  
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or  

= - TnTBr (A-16) 

With the  Doolin and Showman convention  taken  into  account,  the re- 
lations  for  each  tracker  are  given  in  Fig.  A-3a. Note t h a t  a i s  
unmeasurable  and  thus of no concern  here. 

Thus, there   are  two readily  derived models for  the star 
trackers - a model based on rate   equat ions and a model based on 
angle  equations. A very  tedious  exercise  in  algebra and calculus 
proves  that  the  former i s  the  der ivat ive of t h e   l a t t e r  - as  i t  
must be.  Their  influence on the   s t ab i l i t y   ana lys i s  w i l l  be demon- 
s t r a t e d   l a t e r .  

The control  system  design  described  in [l] and [ Z ]  i s  given 
for   bo th  a "constant  processor"  and a "par t ia l   processor .  These 
processors  differ  in  the  degree  to which they  approximate  the 
relat ionship between the  tracker  gimbal  angle  errors  and  the body 
angle   errors .  The "partial   processor ' '   requires  resolvers mounted 
on the  outer gimbal shaf t  and i s  the one t o  be  used i n   t h i s  model. 
For  the  particular  case of trackers 1 and 2 the  "par t ia l   processor"  
i s  given by 

E 0 

E e 

E 
?i!i 

where 

all 1 a13 1 

Ayl 

@2 

(A-1  7) 

E@, € e ,  E$ a re   t he   e r ro r   s igna l s   i n   t he  0, 8 ,  II/ channels, 
respectively.  Each of these  s ignals  i s  then  passed  through a 
lead-lag compensation  network with  t ransfer   funct ion G , ( s )  where 
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= 2.685 10 volt/rad 5 
KC (A-18) 

=1 = 4.5 sec, T~ = 0.5 sec 

as given  in [2 1. The  corresponding  differential  equation  is 

-r2C + V' = K,<T~ + T~): + Kc€ (A-19) 

where ( ' )  denotes  differentiation  with  respect  to  time  and V' 
is  the  output  voltage. By defining 

.1 

V' = CD + Kc (1 + 
z2 

Eq. (A-19) becomes 

(A-20) 

(A -21) 

L 

and the  set of equations,  in  state  variable  form,  that  describe 
the  compensation  networks  are: 

1 'l 1 

@ T2 cu = -Kc @ 2 E@ w + -  - 
T 2 

1 z 
w + -  w = -Kc - 

T2 

1 
T2 8 

v;I = w e + K C (1 +'1).8 7 2 

(A-22) 
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As per  [ 2 ]  the  motors  and momentum wheels are represented by 
the motor sa tura t ion  

V N  = f (v’) (A-23) 

where V”’ , i n   v o l t s ,  i s  

V’ > 26 v o l t s  

v” = f(V’) = , IV‘l 5 26 vo l t s  (A-24) 

-26 , V’ < -26 vo l t s  

and  the  transfer  function from V” t o  wheel  torque i s  

(A-2 5) 

1 f t - lb -sec  
Km = E v o l t  , ‘c = 7 6 . 8  sec . 

m 

Since  the  wheel momentum i s  given by 

= Hw 

the  transfer  function from V” t o  wheel momentum v i s  

The corresponding  differential   equation i s  

~~c + v = K V“’ . m 

The equations  describing  the  vehicle  are: 

I p  = - Hw + (rve - qv+) 
0 

Iq = - Hw + (PV, - rvO) 

E = - H + (qv@ - pve) 

I = 1500 s lug- f t  

e 

W 
1(/ 

2 
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where I i s  the   ro t a t iona l   i ne r t i a  of the  vehicle (assumed t o  be 
balanced) . Thus the  equations  describing  the  motors, momentum 
wheels,  and  vehicle  in  state  variable form are: 

1 p = + -  V 
=,I @ 

1 + -  
m ve ve - 

1 q = + -  V 

'ml e 

1 
v* Tm v* 

+ -  - - 

1 
m 

r = + -  
z I v* 

K m 1 

m 
- -  

T I  V: + y(rve - qvq) 

K m 

m 
- v; 
T 

K m 1 

m 
- -  
T I  V; + ~ ( p v  - rvJ  * 

K m v" 
T +  m 

(A-30) 

If the  gyroscopic  torques due to  the momentum wheels are  neglected 
(this  appears  reasonable on the  basis of simulation  data)  then  the 
vehicle  equations  reduce  to 

(A -3 1) 

I r = - H  - 
w* - - v* 
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or   t o  

(A-32) 

where p(0)  i s  t h e   i n i t i a l   v a l u e  of p .  These simplified  equa- 
tions  clearly  demonstrate  the momentum exchange process. Using 
these  simplified  equations,  w e  reduce  the  state  equations  for  the 
momentum wheels  and vehicle   to:  

1 m 
m m 

K + -  v = -  V i  

(A -3  3) 2 

Final ly   the  equat ions  for   the E u l e r  angles 0 ,  8 ,  @ are:  

@ = p + (teso)q + ( tQc0)r  

8 = (c@)q - ( s @ ) r  
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A l l  the  equations  presented so f a r   a r e  summarized in  block 
diagram form in   F ig .  A-4  for   the  sensing and processing  devices 
and in   Fig.  A - 5  for  the  compensators,  actuators,  and  vehicle. It 
is  c l ea r  from Fig.  A - 4  t h a t   f o r  a pair of  trackers  the  tracker 
r a t e  model contributes  four dynamic equations  while  the  angle 
model contributes  only  the  three  Euler  equations  regardless  of  the 
number of  trackers. Thus, there i s  a saving of a t  least one s t a t e  
var iable  by using  the  angle model. Figure A-5 c lea r ly  shows t h a t  
the dynamic dimension of the  simplified  forward  loop model i s  s i x  
whereas  the more complicated model is of  dimension nine.  Thus, by 
restr ic t ing  ourselves   to   the  t racker   angle  model the  system dimen- 
sion is  nine  for  the  simplified  vehicle model and twelve for   the 
one accounting  for  gyroscopic  torques due to  the  wheels. A l s o  
notice   that   the   s implif ied model forward  loop  has a constant  input, 
t h e   i n i t i a l   t o t a l   a n g u l a r  momentum, and thus i s  e s sen t i a l ly  a regu- 
l a t o r  system. 

In  order  to  perform  the  stabil i ty  analysis  that  i s  planned, 
the  system  state  equations must take  the form 

x = Ax + g(x) (A-35) 

where x i s  the   s ta te   vec tor  of appropriate dimension, A i s  the 
matrix of the   l inear   par t ,  and g(x) i s  the  collection of non- 
l i nea r  terms which  have no l i nea r   pa r t ,  i . e . ,  

(A-36) 

where 11  11 i s  the  Euclidean norm and in   par t icu lar  g ( 0 )  = 0.  
The development here w i l l  be res t r ic ted   to   the   s impl i f ied  model 
(no wheel  gyroscopic  torques). 

We begin by defining a set of  variables whose value a t   e q u i -  
l ibrium (k = 0) w i l l  be zero,   v iz . ,  

e ' = e - e  e (A -3 7) 
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STAR  TRACKERS 1 AND 2 

Fig .  A-4 Feedback  Path.  a)Based on Gimbal  Angle  Rate  Equations 
b)  Based on Euler  Angle Rate Equations 
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Fig .  A - 5  Typical  Forward  Channels.   a)   Without Wheel 
Gyroscopic  Torques. b )  W i t h  Wheel Gyroscopic  Torques 



where 

T I  1 w’ = w - ( -  - h;) 
1(/ 1(/ “ZKm 

(A-3 7) 
(Cont .) 

(A-38)  

= r (0) + - v (0) 1 
I +  

and O e ,  e,, are the   o f f se t   ang le s  which are complicated  func- 
t ions  of t h e   i n i t i a l   a n g u l a r  momentum Ih;, lh;,  Ih; and the com- 
manded gimbal  angles, i . e . ,  they are the  values  that   produce  the 
equi l ibr ium  errors  : 

(A-39)  
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Thus, the  equations  in  the  case of the  tracker  angle model  become: 

K 
v' + A f - c e T  = $ J  (A -40) 

m m m 

A ' = - -  1 Kc"l I 

e 9 2 ' e  
T2 "2 
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+ cec0sY2ccB2c) - Y z c  

A s  s t a t e d  above i n  (A-35) , w e  des i r e  t o  put  the sys  tern into  the 
form 

x = Ax + g(x) ( A - 4 1 )  
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where A is  a constant  matrix  representing  the  linear  part  of  the 
sys t e m  and 

g(x) = F(x) - Ax 

where, j u s t  as i n  (A-36), 

(A -42) 

(A-43) 

A i s  computed by l inear iz ing  F(x)  about  the  equilibrium x 
i . e .  , e' 

where 

... 

and  in   this   case 

x = o .  e 

(A-44) 

(A-45) 

(A -46) 

Performing  the above d i f f e ren t i a t ion  w e  obtain  Fig. A-6aY repre- 
senting  the  linear  part  of  the  system, where the A i j ' s  are  given 
i n  Fig. A-7 .  

Since e,, qe, and @e a re  << 1 in  radians , a Taylor 
series expansion was  made of  the A i j ' s  about 8, = 0, qe = 0, 
@e = 0, retaining  the  constant terms and the  l inear  terms as good 
approximations  of  the  values  of  the Aij s,  i . e .  , 
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Fig. A-6a S ta t e  Equations Based on Tracker Angle Model 
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Fig.  A-6b (Cont) Linearizations of *ij About Qe = ee = 5 0  
and Linear Estimates of 4e, B e ,  qe 



Fig. A-6b ( C o n t )  Linearizations of A. . About = 0 = pe = 0 =J e 
and Linear Estimates of Qe, ee, $e 
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F i g ,  A-7 (Cont) The  Elements of  Matrix A 
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Fig. A-7 (Cont) The Elements of Matrix A 



where 0 = (O,O,O) .  The results  of  this  approximation  are  given  in 
Fig.  A-gb. 

If   the  effects  of  nonzero  equilibrium are assumed t o  be negl i -  
g ib ly  small (something tha t  remains to  be  proved),  then  the  equa- 
t ions  of Fig. A-6a become those  of  Fig. A - 8  where the  variables 
V I  , CUI have  been redefined  to be  dimensionless, i .e . ,  

v; = - KmKc 

1 
V I  e '  e t c .  

(A -4 8) 
T 

CUI e J  e t c .  

Note tha t  i t  is  in   th i s   s impl i f ied  form that  the  decoupling  feature 
of  the  "paired  tracker"  design i s  evident. 

The s tate   equat ions of. the model based on the  t racker   ra te  
model a re  

L 
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Fig .  A - 8  Nondimensional State   Equat ions  Based on Tracker 
Angle  Model - Offse t   Neglec ted  



These equations  are  l inearized  exactly  the way Eqs. ( A - 4 0 )  were 
and the   resu l t ,  assuming  nonzero  equilibrium  effects  to be negl igi-  
ble ,  i s  given  in  Fig. A - 9 .  Note that   there   are   ten  s ta te   var iables  
a s  opposed to  nine  for  the  tracker  angle model, the  decoupling i s  
not  evident, and the matrix A has one zero  eigenvalue (due to  the 
column of  zeros).   Since  the  stabil i ty  analysis  requires  that   the 
l i nea r   pa r t  of the  system be asymptot ical ly   s table ,   th is  model w i l l  
not  be  considered  further. 

The  model based on the  tracker  angle model in  the  simplified 
form  (assuming zero   o f fse t   e f fec ts )  w i l l  be the  only one whose s t a -  
b i l i t y  is  studied  herein.  Its relationship  to  the model analyzed 
and simulated by Doolin and Showman [l] and [ 2  ] can  be  seen by 
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recognizing  that   they  study  only  the  l inear model. Their model i s  
obtained by neglecting  the Ay1,  Ay2 var ia t ions  in   the  processor ,  
l inearizing  the  function f (.) , and  l inear iz ing  the  t racker   ra te  
model. The l a t t e r  s t e p  i s  carr ied  out  by turning  the  tracker  dif - 
ferential   equations  into  incremental   equations by multiplying 
through by an  inf ini tes imal  time A t ,  using  the  approximations 

qAt = A Q  (A-50) 

and ignoring the  var ia t ions A B ,  Ay i n   t he   r i gh t  hand zide.  One 
then  obtains the  approximate  gimbal  angle e r ro r s  A F ,  Ay 

(A-51)  

It turns  out  that  (A-51)  represents   the  f i rs t   order  terms of a 
power series  expansion of the  tracker  angle model equations  about 
o = e = q = o .  

The Popov Approximation 

An analysis  of the  simplified  system where the  only  nonlineari- 
t ies  considered  are  those of  motor saturation  has been carr ied  out  
l i t e r a l l y  because  the  numerical  computation  of  the  coefficient 
matrices was too sens i t i ve .  The simplified  system is represented 
a s  

k = Ax + Gfa(u) , (A-52) 
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where G is a 9 X 3 matrix, fa(u) is a three  vector of satura- 
tion  functions  obtained from g(x) by deleting a l l  nonlinear terms 
except  saturation and l inearizing  the arguments  of the  saturations, 
and - u  i s  a three  dimensional  vector. 
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A-53)  

84 



or  

f I u @ + -  

fa(u) = f I U8 + - 

1 K 
I hy] - h i  
m Km 

1 I h i ]  - - hg I o  

m m K K 

I 

m 

If w e  define T t o  be a matrix whose columns are the  eigenvectors 
of A, and , r e l a t e  y t o  x by 

x = Ty (A -54) 

w e  obtain 

y = T  ATy + T Gf (u) . -1  -1 a 

It can  be shown tha t  

(A -55) 

T AT = diag 0, 0,  0, - -  - -  - - - - - - -1 1 1 1 1 - L, , (A-56) 
z '  7 '  z '  m m m =2 ' z2' 72 
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where T can be written as 

T -  

w i t h  

l o  O 

-1 0 0 

0 

0 
I (T2  - 7 ) - 2 h 2 t P 1  8Y1 

0 G o  0 0 
'mKmKc 

0 - 1  1 
I C  
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(A -57) 

0 
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If we  now proceed  to "tear" the system by defining 

ZT = [Y,J Y5J Y 6 J  Y7J Ygy Ygl (A-59) 

where superscr ipt  T denotes  transpose, i t  can  be shown that   the  
system  equations w i l l  reduce to   the  form 

* * 4 = A z + B fa(u> 

u = H z + J f  (u) , * * a  

where 

* 
J E O  

A* = diag 

* 
B =  

1 -  m m m 

0 

0 

0 

0 

0 

K m 
I 
- 

0 

1 
T J  2 
" 

0 

-L T2 -lI T 2 

0 

K m 
I 
- 

0 

(A-60) 

(A-61) 

87 



It* - 

u ( s )  = H*(s I  - A*)B*fa(u) = - W(s)fa(u) 
S 

where 

w(s) = m(s) 

K K  (Tl + T2)S + 1 
w(s) = - m c  

I S(T,S + 1) (T2S + 1) 

(A -6 2) 

(A '6 3) 

This  is a Popov type  model  with  the  multiple  nonlinearities ex- 
pressed  by  the  vector  fa(u)  where  the  elements  are  given  by 

Elimination  of  Compensator  Lag  Dynamics 

The  transfer  function  of  the  lead-lag  compensation  network  is 
des  cr  ibed by 

(Tl + T2)S + 1 
G (s) = K 
C C T2S + 1 J (A -6 5 )  
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where 

= 2.685 x 10 vol t / rad  5 
KC 

T = 4.5 sec ' , T~ = 0.5 sec . 1 

Therefore , 

(A-66) 

(A-6 7) 

Consider ing  the  fact   that   the   rotat ional   ra tes   of   the   vehicle  
a re  much slower  than 2 rad/sec, le t  us  ignore  for  this  treatment 
the  effect   of   lag dynamics in  Gc(s).  With this  simplifying assump- 
t ion,   the  result ing  equations become 

with a corresponding  differential  equation  for  each  channel, 

V '  = Kc(4.5 + E) . 
Proceeding to   solve  for  E, E ,  w e  obtain: 

(A -6 8) 

(A -6 9) 

(A - 70) 

(A-71) 



By defining  the  following variables  as: 



" 

tA Copt.)  -72) 

the   resu l t ing  state equations become: 

(A-73) 
1 m 

m m 

K - - -  
ve - T ve T 

+ - f ( K  ( e e  + 4 . 5  G o ) )  
C 

Rescaling as before, w e  obtain 

1 = - I 1 
K K  v = -(v - Iho) 
m c  KmKc 

@ I  = @ - 
@e 9 e t c .  , 

with (A-73) becoming : 

(A-74)  
;TI) = - __ 1 + - 1 f(Kc(c@ + 4 . 5  k@))  - I 

0 T @  m KcTm  "mKmKc 
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1 // 1 I v + - f ( K  ( c e  + 4 . 5  ie)) - - - -  
ve - T 0 K T  C m c m  ‘mKmKc ( A  - 7 4 )  

- - . V// , c~ . v//) (cont.) 
e ce 1cI 

By separating the   l inear  and nonlinear terms i n  ( A - 7 4 ) ,  putting 
them into  the  required form ( A - 4 1 ) ,  and  assuming t h a t  AB? and 
AB; are   negl igible ,  i t  can  be shown that   the   s ix   dimensional   s ta te  
equations  take  the form shown in  Fig.  A - 1 0 .  I f  we  wish  to  consider 
the six dimensional model,  and include  only  the  nonlinearity due 
to  the motor saturat ion  funct ion,   the  form  of  Fig. A-10 reduces  to 
t h a t  of  Fig. A - 1 1  

92 



I 
I 

I 
\D 
w 

I ;' 0 - -  'mKc 
I 0 0 

-7(l+ 1 4.5 - ' 'mKc 

1 "  tBlCC'lC 
'ml 

'm V c  ? tBlCC'lC 

- " 

4.5 T) 

0 0 0 'mKc 
" 

I 

0 0 0 0 

0 

tBlC'YlC - 
T 

0 

0 

0 

- - [ 1 +  1 
'm 

0 0 0 

+ 

Fig. A-10 Six Dimensional Approximation of OAO "Paired-Tracker" System Model 
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APPENDIX B 

SIMULATION RESULTS 

This appendix  describes  the  simulation  effort  performed  in 
support  of  the  study. The type  of  simlation  used  and  the  results 
obtained  are  d.iscussed. 

The simulation  uses a fourth  order Runge-Kutta integrat ion 
package  with a 0.1 sec  integration time step s i z e .  The simula- 
t ion  runs  in  1 / 3  real time. The simulation  required  that  the  sys- 
t e m  be descr ibed  in   the  basic   s ta te   var iable  form 

x = f (Xi) i , j  = 1, ..., 9 . 
g g 

The program has a p lo t te r   op t ion  (CALCOMP), which 
ta in   the  f igures   presented below. The flow chart  

was used to  ob- 
i s  presented  in 

Fig. B - 1  an; i n  Appendix G .  This i s  the  flow of the main routine 
only. The subroutine of ch ief   in te res t  i s  "AFX, which contains 
the  state  equations.  It  i s  bas ica l ly  AFX tha t  was modified  for 
the  various  models.  Listings  are  available upon request from the 
Research  Department , Grumman Aerospace  Corporation, Be thpage, N .Y. , 
1 1 7 1 4 .  

Figure B-2 out l ines   the  ini t ia l   run  plan.   Five  sets  of runs 
for  various  tracker  cases  with  the same in i t ia l   condi t ions  on the 
state  (except  for changes in   t he   t o t a l  momentum Ihp) a re  p r e -  
sented. The system  parameters are also  given.  Figures B-3 and 
B-4 present   the  resul ts  of Runs No. 2 and No. 5. 

For a l l  runs of t he   i n i t i a l   s e t   t he re  w a s  a bas ic   s imi la r i ty  
of performance. Some unexplained  differences  in  the "6-D" model 
do e x i s t .  These differences  are  not  consistent  channel  to  channel 
or  run  to  run  but d o  indicate   that   the   lag  in  some minor way a f -  
f ec t s  performance. 

The main concern as  regards  comparison, i s  the  re la t ion  be-  
tween "AN" ( the  exact model) and "MY," the model t ha t  i s  ident ica l  
t o  the Doolin-Showman  model in  the  feedback  path. The cases  con- 
s ide red   i n i t i a l ly ,   fo r  which ''AN" has good performance, show a 
nearly  identical   performance  for "AN" and "MV." The only  differ-  
ence  occurred  in  the t i m e  of  wheel accelerat ion  s ign change, a 
difference  caused by the  differences  in   error   s ignal .  

95 



CONTINUE 
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Fig.  B - 1  Generic  Simulation  Program Flow C h a r t  
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Inner  Gimbal Cornnand8 Total Axis Momenta 
ft-lb  sec 

Iht Iht Ihi 

1 0.1 

2 Om1 

3 0.1 

4 1.0 

5 1.0 

0 a 0  -30 . 0 Om0 0.0 0.0 

30 .O -30 . 0 0.0 0.0 0.0 

30.0 -30 . 0 1.0 1.0 1.0 

0.0 -30 . 0 0.0 0.0 0.0 

0.0 -30.0 1.0 1.0 1.0 

0 

Initial  Conditions: 0 ,  8 ,  9 = 15.0 ; v,, vB,  vJI = 1 ft-1% mc; 

System  Parameters: T~ = 4.5 aec; 72 = Q.5 sec; Kc = 2.685 10 5 

volt/rad; - 1/13 ft-lbf-sec/volt; 
I = 1500 slug-ft' 

Basic  Nonlinear Model -AN Motor  Voltage  Only  Nonlinearity - MV 
Basic  Model w i t h  Limiting -ANL Six Dimensional Model - 63, 

Fig .  B-2 Control System Simulation Run Plan 
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Fig .  B - 3  Control System  Simulation Run 2 (Sheet 1 of 6) 
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F i g .  B-3 Control  System  Simulation Run 2 (Sheet 2 of 6) 
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Fig. B-3  Control   System.Simlat ion Run 2 (Sheet 3 of  6) 
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Fig.  B - 3  Control  System  Simulation Run 2 (Sheet 5 of 6) 
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F i g .  B-3 Control  System  Simulation Run 2 (Sheet 6 of 6)  
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F i g .  B-4  Control  System  Simulation Run 5 (Sheet 1 of 6) 
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Fig .  B-4 Control System Simulation Run 5 (Sheet 2 of 6) 
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Fig. €3-4 Control  System Simulation Run 5 (Sheet 3 of 6) 
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Fig.  B - 4  Control  System  Simulation Run 5 (Sheet 4 of 6 )  
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Fig. B-4 Control  System Simulation Run 5 (Sheet 5 of 6)  
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Fig .  B - 4  Control  System  Simulation Run 5 (Sheet 6 of 6) 
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A run was then made with  ini t ia l   condi t ion  ident ical   to   those 
in   F ig .  B-2, but   wi th  s(ylc  - yzC) = 0 . 1  and PI, = PzC = 30. 
The resu l t s   o f   th i s   run   a re   p resented   in  F ig .  B-5. It can be seen 
tha t  "AN, "6 -D, "ANL" are   unstable  and tha t  "MY" i s  s t ab le .  
Study  of th i s   case   revea ls   the   fac t   tha t   a t  t = 0 the  error  
s ignals  E @ ,  € 0 ,  E+ were negative  for "AN,"  "ANL," "6-D" but  pos- 
i t ive   ( the   necessary   s ign   for   s tab i l i ty   for   in i t ia l   condi t ions  
chosen) f o r  "MV." Thus the  nonlinear  coupling  in  the  true  error 
signals  can  provide  the wrong error   vol tage  s ign  for  some tracker 
cases.  Table' B - 1  presents one set  of tracker commands which w i l l  
y i e ld   t h i s   s i t ua t ion   fo r  Q = 8 = II/ = 10" a t  t = 0 .  In a l l  
cases   the   res t r ic t ion  l y l c  - ~ 2 ~ 1  2 10" i s  obeyed.  These  cases 
should a l l  be unstable  for "AN," "ANL, 'I and "6-D" bu t   s tab le   for  
t "v .  

From this  information i t  can be concluded tha t   in   genera l  
nei ther  "MV" nor  any  other model t ha t  i s  based on l inearizing  the 
feedback i s  va l id   fo r  a s tab i l i ty   s tudy .  The exact model, "AN," 
must be  used. 
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Table B - 1  

PRESUMED UNSTABLE CASES 

Command Gimbal Angles  (Degrees) 

Ylc 

5 

5 

5 

5 

5 

10 

10 

10 

10 

y2c 

-5 

-5  

-5 

-5 

-5 

0 

0 

0 

0 

@ l C  

40 

45 

50 

55 

60  

4 5  

50 

55 

60  

* 
@2c 

50 

40 

35 

2 5  

10 

4 5  

3 5  

2 5  

5 

* 
This  value and higher  lead  to  predicted  unstable  cases for these 
values a t  t = 0 



APPENDIX C 

ANALYTICAL STABILITY STUDIES 

In   t h i s   append ix   t he   s t ab i l i t y   ana lys i s   o f   t he   l i nea r   pa r t   o f  
the  sys  t e m  descr ibed  in   Sect ion 4 i s  shown t o  be q u i t e   s t r a i g h t -  
forward as a resu l t   o f   the   l inear   decoupl ing   fea ture  of the  "paired- 
t racker ' '   des ign .   In   addi t ion ,   the   s tab i l i ty  of the Popov approxi- 
mation  (motor saturat ion  only)  i s  examined  and i t  i s  shown t h a t ,  
a t  present ,   the   avai lable   f requency domain techniques  are  not  suf- 
f i c i e n t l y  w e l l  developed  to   completely  prove  the  absolute   s tabi l i ty  . 
of   that  model. Note t h a t   i n  Appendix B i t  w a s  shown t h a t   t h i s   a p -  
proximation  does  not  ad.equately  represent  the  stabil i ty  properties 
of the  actual  system; however,  an  examination  of i t s  s t a b i l i t y  
proper t ies  i s  requi red   in  Appendix F,  p a r t   ( i i ) .  

I f  a l l  nonlinearit ies  of  the  system  are  ignored,  then  the 
system  equations  reduce  to 

x = A x  

where x i s  a nine  vector  as before  and 
i n t o  3 X 3 submatrices, i . e . ,  

(c-1) 

A can  be  par t i t ioned 

where  the A i  are readi ly   ob ta ined  from Fig.  4 - 6  of Section 4 .  

The s t a b i l i t y  of  the  l inear  system (C-1) i s  determined by the 
roo t s   o f   t he   cha rac t e r i s t i c   equa t ion  

c(A) = det(A1 - A )  = 0 . (c -3)  

Since A i s  upper   t r iangular ,   in   par t i t ioned  form, w e  obtain 

c(A) = det(A13 - Al)det(A13 - A2)det(A13 - A3) = 0 (c-4) 
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where I3 is the 3 X 3 iden t i ty  matrix. Thus, th i s   l inear   sys-  
t e m  i s  s t a b l e   i f  and only i f  each  channel  of  the  linear  system i s  
stable.   This i s  a d i r e c t   r e s u l t  of the  linear  decoupling  inherent 
in  the  "paired-tracker"  design. 

Thus, the   s tab i l i ty   ana lys i s  of the  linear  system i s  reduced 
to  determining  the  stabil i ty of  each  channel  separately, i .e . ,  de- 
termining  the  stabil i ty of  each  matrix A i  f o r  i = l, 2 ,  3 .  The 
problem i s  fur ther   s implif ied by recognizing  that A2 = A3. Sta- 
b i l i t y  of  the system (C-1) i s  obtained  if   the  characterist ic  roots 
of A 1  and A2 have negat ive   rea l   par t s .  Their corresponding 
character is t ic   matr ices   are:  

h 
K K  m c  

T 0 

T + T  - 1 2 't 

T T  
1 

m 2  m m 2  
" 

z z  

z 2 

and 

A 

0 + 3 
2 

KmKc 
I 0 

T1 + T 2 Tl 
- a l  T T  

- -  
m 2  T T  m m 2  

0 

where a1 = d12s(ylc - yzC). The character is t ic   equat ions  are  

cl(A) = det(A13 - A1> = h ( h + y ) ( h + ~ ) + y  1 1 -(A+ ) = o  K K  T +z 

m 2 m 2  1 2  T + a  
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and 

The roots  of  these  equations  can  be  found  by  root  locus  techniques 
from the  equation 

K K al + a2 l + a l -  m c  
1 = o  * 'ma2 A(A  + L)(h+ a T) 

m 2 

where a1 = 1 for   the  roots  of  cl(A) = 0 and a 1  = d12s (ylc - ~ 2 ~ )  
for   the  roots  of  c2(h) = 0.  Subst i tut ion of  the  parameter  values 
y ie lds  

h + 0.2 " a1(1.79) h ( A  + O.O13)(h + 5) = o  (c-10) 

Simple root  locus  considerations show that   the   roots  of (C-10) 
have  negative real p a r t s   f o r  a l l  a1 > 0, i n   f ac t ,   t he   roo t s  of 
(C-9) have  negative real parts f o r   a l l   p o s i t i v e   f i n i t e   v a l u e s  of 
the  parameters. Thus, the  linear  system (C-1) i s  s t a b l e   f o r   a l l  
posit ive  values of the  system parameters. Note t h a t   f o r  a1 t o  
be  posit ive i t  i s  necessary  that  sgn  dl2 = sgn(ylc - ~ 2 ~ ) .  This 
i s  how the  functional form of  the  choice  dl2 = 2 . 0  sgn(ylc - yzC) 
i s  a r r i v e d   a t .  

Thus, w e  have shown tha t   t he   s t ab i l i t y   ana lys i s   o f   t he   l i nea r  
p a r t  of the  system  can  be  accomplished by d i rec t   appl ica t ion  of 
s imple  root  locus  concepts,   and  that   this i s  a r e s u l t  of the   l inear  
decoupling  feature of the  "paired-tracker"  design. 

The s t a b i l i t y   a n a l y s i s  of the Popov approximation  to  the  sys- 
tem  mod.el should be equally  straightforward; i t  i s  not,  however, 
because  the  available  frequency domain techniques are no t   fu l ly  
developed.  This  approximate model was der ived  in  Appendix A and 
is  sunnnarized by 
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u = - W(s)fa(U) (c-11) 

where 

W(s) = w(s)w 

KmKc (TI + T2)S  + 1 

w(s) = I s + 1) (T2S + 1) m 

(c-12) 

tBlcSYlc 

and u i s  a three  vector.  

Let  us f i r s t  consider  the  special  case B l c  = 0 i n  which 
event  the  three  channels  are  completely  uncoupled. Then we apply 
the  special  form of  the Popov theorem [15]  t o  a single  channel. 

Theorem (Popov). - For the  particular  case  of a system 
(the  l inear  part   has  poles  with  zero  real   part)   to be 
absolu te ly   s tab le   in   the   sec tor  [ E ,  K ] ,  E > 0 ( i . e . y  
cut 5 ui fy(u i )  < KU$ f o r   a l l   u i  + 01 i t  i s  s u f f i -  
c i en t   t ha t   t he re   ex i s t s  a r e a l   f i n i t e  number q such 
t h a t   f o r   a l l  u) 

- 

Re(1 + iwq)W(iu)) + > 0 1 (C -13) 

and  that  the   condi t ion   for   s tab i l i ty   in   the  l i m i t  ( i . e . y  
i f   t h e r e  i s  a s ingle   pole   a t   the   or igin  then 

l i m  I m  W(icu) = - m) i s  s a t i s f i e d .  
+ c u - 1 0  

. 



In   t h i s  uncoupled  case we have,  for a single  channel 

K K  (-r1 + T )iw + 1 2 
im(-rmiw + 1) ( T  2 i w  + 1) 1 

where a1 is  e i t h e r  1 or  d12s(ylc - yz,),  and (1 + iq)W(iw) 
is  posi t ive  real   s ince  the  poles  and zeros of W(iw) a r e   a l l   r e a l ,  
the  gain i s  posi t ive,  and q can be chosen t o  make the  poles and 
zeros  of (1 + iwq)W(iw) interlace.   In  addition,  the  condition 
f o r   s t a b i l i t y   i n   t h e  l i m i t  holds  since  the  gain i s  posi t ive.  Un- 
for tunately,   the   saturat ion  funct ion does n o t   f a l l   i n t o   t h e  [ E ,  K ]  
sector   s ince  for   large  lui l   the   gain of fi(ui)  goes t o  zero. 
Perhaps one can try  to  use  mathematical   art if ices t o  make the 
system sat isfy  the theorem  but no motor known to  us can develop 
unlimited  speed  for  unlimited  input  for  any  f inite  t ime. I t  i s  
the  pole a t  the  or igin  that   causes   the  fa i lure  of th i s   appl ica t ion  
of the Popov theorem. 

a 

In [ 1 6 ]  Brockett  quotes  another  version of the Popov theorem, 
v i z . ,  

Theorem (Brockett) . - Let q ( s )  and p (s) be  poly- 
nomials  without common fac tors  and l e t  

x = A x + b u ; y = c x  T (C-15) 

be an  irreducible  (controllable and observable)  repre- 
sentation  of G(s) = q(s ) /p ( s ) .  Suppose p(s)  has no 
zeros  in  the  half-plane R e  s > 0 .  It  fol lows tha t   the  
nonlinear sys  tern 

4 = Ax - bf (c  x) ; 0 f (y ) /y  < K - (C-16) 
T 

has a nul l   solut ion which i s  asymptot ical ly   s table   in  
the  large  provided  there  exists a r e a l  q such  that 
(1 + qs)G(s) + 1 / K  i s  pos i t i ve   r ea l  and 

fa(y) (Ky - f a (y ) )  # 0 f o r  y # 0 . (C-17) 

Now w e  have shown t h a t  (1 + qs)G(s) + 1 / K  is pos i t ive   rea l  
for  a l l  posi t ive K; therefore w e  can  choose K large enough for  
(C-17) to  hold so long  as 1 Ih0/26 &I < 1. Thus, the  system is  
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globally  asymptotically  stable so long a s  !31, = 0, y l c  - yzC 0, 
the  gain i s  posi t ive,  and  the i n i t i a l   t o t a l  momentum i s  within  the 
sys tem capacity. 

For  the  case B l c  # 0 the  pitch  and yaw channels  are s t i l l  
globally  asymptotically  stable by the  arguments  above,  but  the 
r o l l  channel  cannot  be  handled a s  above  because i t  has  inputs from 
pi tch  and yaw. This s i tua t ion  i s  in  the  class  covered by special-  
izing  the work of Sandberg [ 1 7  ]. 

Theorem (Sandberg) . - Let tpwL1 ( t )  E dl ( 0 , ~ )  n d2 (0, W) 

p =  0,1,2. Let p(t)  = e ( t ) +  .fi wl1(t-T)ff(e(-r>)dTt t > 0 
where p ( t )  E ;eWN(O ,a) . ( p ( t )  i s  measurable  and bounded 

on ( 0 , ~ )  and e ( t )  E dN)( e is measurable on ( 0 , ~ )  and 
a l l  i t s  time truncations  are  square  integrable) . k t  

Suppose tha t  

Then e ( t )  E & , N ( O , ~ ) ,  t here   ex is t s  a constant  c, which 
depends only on w,  a ,  B ,  such tha t  

and e ( t )  + 0 a s  t + 03 whenever p( t )  + 0 a s  t + W .  

Note t h a t  a < fT(u1)  /u1 5 B and f: (0) = 0 a re   a l so  - 
required.  
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The theorem i s  eas i ly   re la ted   to   the   d iagram below  where p ( t )  
i s  seen  to   be  the  input   to   the  rol l   channel   f rom  the  pi tch  and yaw 

F i g .  C-1 I l l u s t r a t i o n   o f  System i n  Form for   Applicat ion 
of a Sandberg Theorem 

channels  and  e(t)  i s  the   ro l l   channe l   e r ro r   s igna l .   Unfo r tu -  
n a t e l y  w11(s)  contains a pole a t   t h e   o r i g i n  and  therefore 
twrl(t)  i s  not  d l ( O , w )  o r  d 2 ( 0 , ~ ) .  That is  why the  system  has 

been drawn as shown t o  create w{l (s) = w l l ( s )  (w11(s)  + 1) 
which  does sa t i s fy   t h i s   cond i t ion   because  a l l  poles   of   wil (s)  
are w e l l  in to   the   l e f t -ha l f   p lane .  It i s  easy  to  show by  root 
locus  arguments   that   condi t ion  i )   holds   for  a = - 1 , p = o  
which a r e   r e q u i r e d   f o r   f f ( u i )  ', the   redef ined  nonl inear i ty .  
Condition i i )   t u r n s   o u t   t o  be 

(C-18) 

but ,   unfor tunately,  i t  i s  easy  to  see tha.t   the  expression  has 
value 1 a t  cu = 0 .  The re fo re ,   t he   r e su l t   (g loba l   s t ab i l i t y   fo r  
the  coupled  system)  cannot  be  established  this way. 

The only  remaining  alternative i s  to   t ry   the   very   genera l  re-  
s u l t  of  Yacubovich [18]. (Brockett's  theorem,  given  above, appears 
t o  be a special   case  of  this  theorem.) H i s  work i s  apparent ly   the 
most  encompassing  frequency domain s t a b i l i t y   r e s u l t .  From i t  one 
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can obtain  the Popov theorem, the   c i r c l e   c r i t e r ion ,  and results 
that  are  stronger  than  those  of Popov. The matter i s  too  compli- 
cated  to   present   in   detai l ,   but   in   essence i t  i s  that  the  system 
must have a Hurwitz l i nea r   pa r t  (a.11 eigenvalues   s t r ic t ly   in   the 
left-half   plane);   then. one  forms quadratic,  forms in  the  nonlin- 
earit ies and t h e i r  arguments. t h a t  are nonnegative,  and a compli- 
cated  quadratic form i s  developed from the  system  function and the 
quadratic forms in   the  nonl inear i t ies .   I f   th is   quadrat ic  form i s  
negative  definite  in  the  nonlinearit ies  ( i .e. ,   the  fT(ui)   are 
considered as variables)  then  the  system  solution  goes  to  zero 
with t + 03 and it  i s  square  integrable. 

The matrix system was reformulated  to f i t  the  conditions  of 
the theorem  by extract ing  uni t   gain from each  saturation and using 
i t  to   shif t   the   system  poles   as   i l lust rated  in   Fig.  C - 1 .  We were 
not  able  to  satisfy  the  other  conditions  of  the theorem despite  the 
va r i e ty  of formulations of the Yacubovich funct ion  that  w e r e  t r i e d .  
Thus, we  have to  conclude that  the Popov approximation i s  l i k e l y  
t o  be absolutely  s table  on the  basis  of  single  channel  evidence 
and a v i sce ra l   i n tu i t i on ;  however, the most powerful  frequency 
domain theorem  could  not  be  used  to  prove  this.  Further,  the com- 
putations  required by the Yacubovich  theorem are   very   d i f f icu l t  
and tedious  to do  by hand.  This  indicates  that  as i t  now stands 
some computational  aid i s  required  to make i t s  appl icat ion t o  
large systems feas ib le  and p rac t i ca l .  
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APPENDIX D 

SOLUTIONS OF COMPUTATIONAL PROBmMS 

(i)  Solution  of  the  Liapunov  Matrix  Equation 

A summary of   four   a l te rna t ive  methods f o r  computing  the  solu- 
t i on   t o   t he  Liapunov  matrix  equation w i l l  be  presented. O f  the 
four   a lgori thms  to   be  discussed,   the   f i rs t   has   been  descr ibed  in  
Geiss e t  a l .  [19] ;  the   second,   third  and  fourth  are   based on the 
work of Ma [20],  Smith  [21],  and Jameson [22] ,   respect ively.  

Algorithm 1. - This i s  a rel iable   brute   force  approach  in   which 
the  Liapunov  equation,  viz. ,  

A P + P A =  - Q  T 
(D-1) 

i s  t o  be  solved  for P ,  A and Q being  given. Here P and Q 
are assumed t o  be n X n and  assumed t o  be stable  throughout  ( the 
s t a b i l i t y   c r i t e r i o n  i s  not   necessary  for   a lgori thm 1). 

Expanding (D-1) and  rewrit ing i t  as a vector  equation, w e  - 

obta in  

Amod. 

1 2  6 



i s  n X n2 and i s  given by where 
2 

*mod 

Amod = AT@ In + I n @ A T  

i n  which I, i s  the n X n identity  matrix,  and @ i s  the 
Kronecker  product [23].  For n = 2 we  have 

I 

""- + ""_ 
1 

(D "3) 

I a1212 I I + a 2 2 ~ 2  1 
I 

The solution of (D-2) i s  then  simply a matter of inverting Amod 
and reconstructing  the P matrix. One can readily  see  the compu- 
t a t i o n a l   d i f f i c u l t i e s   t h a t  would arise  in  at tempting  to  solve  the 
o r ig ina l  Liapunov equation f o r  dimensions much above 10. Inver- 
sion of matrices w e l l  above 100 X 100 would be necessary.  If 
only  the  core  storage of a large machine is used,  matrix  inversion 
i s  l imited t o  matrices less than 150 X 150. 

Three r a the r  more elegant developments  follow. 

Algorithm 2 .  - The mat r ix  equation, (D-l), can be solved  for P a s  
fo l lows  : Assume t h a t  

a r 

( A  - Ai> 
i i = 1, 2,  ...) r , 1 a i = n  (D-5)  

i= 1 

are  the  elementary  divisors of A (and thus AT) over e ,  the 
f i e l d  of complex numbers. Then there  exist   matrices U, V such 
t h a t  

A = U AIU - 1- 

L 

and 

AT = V AIV -1- 
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where A1 is  the  Jordan normal  form f o r  A (and thus AT) ; i . e . ,  
,-u 

,-u + Na , h I + Na , ..., h I 
"2 r a  1 2 r  r 

i , j  = 1, 2,  ..., a 
CL 

(D-10) 

and 6 i j  i s  the Kronecker de l t a .  The Liapunov equation  then  be- 
comes 

.-b  .-b 

AIY + YA1 = - D , (D-11) 

where 

Y = VPU -1 (D-12) 

and 

D = VQU . -1 (D-13) 

In [20 I ,  Ma gives   a   f ini te  series solution  for  the  matrix 
e qua t ion 

.-b .-b 

A X ' X B = C ,  (D-14) 

.-u 

where A and B are  in  Jordan normal  form. Thus, via   the  ident i -  
f i ca t ion  X = Y ,  A = AI,  B = - AI,  and C = - D, the  solution  to 

c\r 

. - b "  .-b 

(D-11)  is obtained  from"a1 s solui ion  to  (D-14) . The solut ion is :  

n=O o+a=n 

where Yij and D i j  a re   the i j  elements of the   par t i t ions  of 
Y and D, which are   the same as   t he   pa r t i t i on  of 21. Final ly ,  
a s  suming tha t A1, V, and U can be computed, we obtain P as 

.-u 
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I 

P = V  YU -1 (D-16) 

from (D-12) . Note tha t   s ince  A i s  assumed t o  be s t a b l e ,   a l l  A i  
w i l l  have  negative  real parts and 

A. + A. # 0 
1 

i , j  = 1, 2, . .., r . 
J 

(D-17) 

Thus only  the  f i rs t   case  of  Ma's solution, (D-15), need  be  con- 
s idered  here .   Further ,   i f  A i s  of s imple s t ruc ture   ( i . e . ,   the  
eigenvalues are distinct) ,   then  the  solution i s  

-d i j  

1 j 
Y i j  A ,  + A 9 

- - i , j  = 1, 2, ..., n , (D-18)  

where  yij and dij   are  elements of Y and D, respectively.  

The main drawback  of t h i s  method i s  the  requirement  that A 
be provided  in  Jordan normal  form,  along  with  the  appropriate 
t ransform  t ion  ma t r i c e s  U and V. There  does not  appear t o  be 
any reliable  computational  procedure  for  doing  this fo r  a rb i t r a ry  
matrices,   in  particular  for  those of the  degenerate  eigenvector, 
mu1 t i p  l e  e igenva  lue  var i e  t y  . 

Algorithm  3. - Smith [21 ]  presen.ts a scheme for  obtaining  an  ex- 
pl ic i t   expression  for  P i n  (D-1) that  uses  the  n2  elements of 
A in  the  relatively  simple  operations of matrix  multiplication 
and addition.  In  the more diff icul t   operat ions of determinantal 
expansion,  only n variables  are  involved. 

Define  constants  kl" - " Y  kn' and  an n X n matrix G by: 

det(h1 - A) = An + klh n -1 + k2hn-' + ... + kn (D-19)  

G =  

0 1 0 0 ... 0 

0 0 1 0 ... 0 
0 0 0 1 ... 0 

. . . . . . . . . . . . . . . . . . .  
0 0 0 0 ... 1 
-k - 

n 
- 

k* -1 kn -2 kn-3 . . .  -kl 
- 

(D-20) 
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THEOREM 1 (Smith). - If Z i s  any n X n matrix, 
and U = ( u i j )  , C = ( c i j )  are n X n matrices s a t i s f y -  
ing 

G U + U G = - C ,  T 

then  the  following matrices s a t i s f y  (D-1): 

n n  
1 i -1 

Q = - 2 1 1 cij (AT) Z A j - l  . 

COROLLARY (Smith). - If U = (Gij) i s  a so lu t ion  
of (D-21) when C = diag(c,  0 ,  . . ., 0 ) ,  then 

i s  a so lu t ion  of 

T A P + P A =  - c Z .  

If c # 0, s e t t i n g  Z = c Q i n  (D-24) and (D-25), w e  -1 
obtain 

n n  i -1 
P = ' 1 1 Gij  (AT) QAj 

C 

which i s  the   so lu t ion  of 

(D -21) 

(D -22) 

(D -23) 

(D -24) 

(D-25) 

(D-26) 

A P + P A = - Q .  T 
(D -2 7) 
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It remains t o  be 
t o  be  used  in (D-26). 

- kl 
k 

A o  

0 

0 

H =  

. .  
0 

shown  how one obtains  the  (uij)  elements 
A 

Let us  define  the  following 

k7 ... 
k6 ... 
k5 ... 
k4 ... 

k2n -1 

k2 k4 k2n -2 

kl k3 k2n -4 

0 k2 k2n -4 k 

. . . . . . . . . . . . . .  
0 .. .. ... k n 

mitrix: 

(D-28) 

where k, = 1 and kp = 0 f o r   a l l  p > n. 

THEOREM 2 (Smith) . - If kl , . . . , k, a r e  real , then 
the  equation 

GTV + VG = - diag(h, 0 ,  . . . , 0) (D -2 9) 

has  the  hermitian  solution V = ( v a ~ )  given by 

n-a n-B 

r = O  s=O 

where h = det(H), k, = 1, @ ( e )  = 0,  when 5 is  not  an 
integer;  otherwise @ ( E )  i s  the  cofactor of the  element 
i n   t h e   f i r s t  row and Eth  column of the H matrix. 

We see t h a t   i f  c = h,  then  the  solution  for V given by 
(D-30) can  be subs t i tu ted   in to  (D-26) ,  where u(a,B) = v(a,B) , 
a = 1, ..., n B = 1, ..., n. 

We s h a l l  now  show a convenient way of  determining  the numbers 
kl, . . ., without  determinantal  expansion. Firs t ,  we define 

s = t r a c e   [ A ~ I  . 
V 
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Since kl, .... k, are homogeneous polynomials in  the  eigenvalues 
of A, they  can  be wr i t t en   v i a  Newton’s i d e n t i t i e s   i n  terms of 
SI, S2, “ . Y  Sn 

s1 + kl = 0 

s2 + s k  + 2 k 2 = 0  1 1  

s3 + s2kl + s k + 3k3 = 0 1 2  (D-31) 

. . . . . . . . . . . . .  

s + . . . . . .  n k n = O .  n 

This method of obtaining  the k ’ s  i s  attractive  because  the com- 
putation of Av for  v = 1, 2, .... n i s  already  required  for 
the  computation of P i n  (D-26). 

The cofactors of H a re   re la t ive ly   easy   to   ca lcu la te   s ince  
the  matrix  involves  only  the  variables kl, .... b, and many of 
i t s  elements  are  zero 

Algorithm 4 .  - Jameson [ 2 2 ]  has  independently  devised a technique 
for  numerically computing the  solution  to 

A x + x A  = c  T (D  -3 2) 

where A, C, and X a r e   r e a l  n x n matrices. C i s  generally 
symmetric, i n  which case X i s  a l s o  sy-mnetric. 

Form the  sequence  of  expressions: 

co = 0 

C 1 = C = A x + x A T  

2 2 

c2 = AC1 - C,AT + AC AT = A X - XAT 
0 

. . . . . . . . . . . . . . . . . . . . .  
(D-33) 

A T + A C ~ - , A ~  = A x - (-1) XA . N N TN $ = ACN-l  - 
‘N-1 
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The  recurrence  relation m y  also  be  written as 

or 

(D-35) 

If C is  symmetric,  then Ck is  symmetric  when k is  odd  and 
antisymmetric  when k is  even.  Let  the  characteristic  equation 
of A be 

According  to  the  Cayley  Hamilton  theorem  this  is  satisfied  by A 
and  AT.  Therefore 

'N alCN-l ' * + N-la N - 1  C 1 = ANX - alAN-'X . . . 

+ (-l)N-laN-lAX + (-l)Na# 
(D  -3 7) 

TN - 1 
'N+ alCN-l . . . + a N - l ~ l  = - a 3  - (-1) ... 

Thus  the  solution of (D-32) may be  written  as 

-1 -1 
x = G K = L(G~> , (D-38) 

K =  CN - alCN-l . . . + (-l)N-laN-lcl (D-40) 

L = CN + alCN-l ... + a N-1'1 * (D-41) 
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I f  C i s  syrmnetric then L = KT. Since  the  determinant  of a 
product of matrices is  equal  to  the  product  of  their  de terminants , 
i t  i s  evident   that  G i s  n o t   i n v e r t i b l e   i f   f o r  any i, - h i  i s  a 
character is t ic   value  of  A .  The equation  can  therefore  be  solved 
i f  and  only i f  h i  + hj # 0 fo r  a l l  i, j .  

The cha rac t e r i s t i c   coe f f i c i en t s  a i  may be determined by 
Bocherts  identit ies [ Z S ] .  

al = tr(A) 

= - l r a  tr(A) + tr(A 2 1  ) J a2  21 1 
(D-42) . . . . . . . . . . . . . . . .  

a = - lra tr(A) + aN-2tr(A 2 ) ... + tr(AN)] = (-l)NIAl . 
N N 1   N - 1  

Alternatively,   they may be determined from the  character is t ic   co-  
e f f i c i e n t s  by the  rule  for  polynomial  multiplication. 

By adding  and  subtracting  the  characterist ic  equation  for A 
t o  (D-39), G can  be expressed  in terms of  even or  odd powers 
only  of A, 

G =  2 r  A r N  N -2 1 
1 11 " ' 1  + ' H A  

= - 2 r  A N - 1  N -3 
+ r22A 

1 
1 2 1  " ' 1  

(D -4 3) 

(D -44) 

where 

I f  (D-44) i s  multiplied by (rl l /r21)A and subtracted from  (D-43), 
then AN i s  eliminate'd,  yielding 
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r 
[ I  + A], = 2 [  r31AN-2 + r32A N-4 . . . I  , 

r21 

where the  coeff ic ients  r i j  are  generated by Routh's  rule 

( D  -46) 

( D  -4 7 )  

AN -1 

procedure  can  be  repeated un t i l   t he   r i gh t  hand s ide i s  f i n a l l y  
reduced to   the  ident i ty   matr ix .  It follows  that  

can  then  be  eliminated between (D-44) and (D-46) ,  and t h i s  

where 

H1 = I  

H2 = I  
r 11 = Hl + -  H3 r 2 1  AH2 

( D  -4 8 )  

(D-49) 

. . . . . . . . . . . .  

%1= %-1+ 
r N - l ,  1 
r N, 1 

The inverse  of G i s  thus  expressed as a power se r i e s   i n  A up 
to  the (N-1) * power. 

The Liapunov equation, ( D - l ) ,  may thus  be  solved by using  the 
r e s u l t ,  ( D - 3 8 ) ,  and 

a) forming G - I  directly  according  to (D-48) 

or 

b) forming G according  to (D-39) and  inverting  the 
resulting  system  of  equations. 
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Method b) ,  which has  been  found t o  be  computationally  su- 
per ior ,  is  the one incorporated  in  the program. 

The four  algorithms  discussed  in  this  report  have a l l  been 
programmed for  use on the IBM 360-75, and  have  given sa t i s f ac to ry  
resul ts   in   solving  the Liapunov equation. 

Input  data  for  both  an  eight and  nine  dimensional  problem 
were used  in  the  tria.1  runs,  with  the  elements of the A matrix 
f o r  n = 8 being  taken  from  the  dynamical  equations  of  the U.S. 
Naval a i r c r a f t  E2A l a t e ra l   con t ro l  system. The A matrix  for 
n = 9 was chosen  out  of  convenience, a s  one fo r  which  the  Jordan 
form and  transformation  matrices were known. 

PROGRAM 1 (Full'  Inversion):  Requires problem  dimension  (n), 
Q, and A as inputs.  Computing t i m e  fo r  a nine dimensional 
problem = 1 .22  seconds, with t proportional  to (n)6. 

PROGRAM 2 (Er-Chieh Ma Method) : Requires  n, .Q, A, the e le-  
ments  of  the  elementary  divisors  of A (and  thus AT) ,  and the 
transformation  matrices U, u-', V, v-' as   inputs .  Computing 
time fo r  a nine  dimensional  problem = 0.11 seconds,  with t pro- 
portional  to  (n)5.  Note that  the  computation  of  the  transforma- 
t ion  matrices  for a general nonsyrmnetric matrix, A, is  nont r iv ia l .  

PROGRAM 3 (Smith's Method): Requires  n, Q, and A as i n -  
puts. Computing time f o r  a nine  dimensional  problem = 1.06 sec- 
onds,  with t proportional  to  (n)5. 

PROGRAM 4 (Jamesonls Method) : Requires  n, Q, and A a s  
inputs.  Computing time f o r  a nine  dimensional  problem = 0.5  sec- 
onds,  with t proportional  to  (n)4. 

So far  as  accuracy i s  concerned, a l l  the methods give com- 
parable  results  for  the  dimensions we have  used (up t o  n = 9 ) .  
Accuracy deterioration  increases  with dimension for  a l l  programs, 
but  the one tha t   suf fe rs   l eas t   in   th i s   respec t  i s  Program 1 ( f u l l  
inversion  method), which i s  a l so   the  one tha t   suf fe rs  most with 
respect  to  increase of computing t i m e  with  dimension. 

It appears  that,  faced  with  the problem  of  employing a com- 
puter program for  solving  the Liapunov equation, one should  choose 
between Program 1 (full   inversion) and Program 4 (Jameson's method). 
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The fu l l   invers ion  method suffers   least   in   accuracy  deter iorat ion 
with dimension  increase,  while  the l a t t e r  i s  superior  in terms of 
computing time variation  with  dimension. Program 2 ( M a t s  method) 
i s  not   par t icu lar ly   p rac t ica l   in   tha t  i t  requires  the  Jordan form 
of A a s  w e l l  as the  transformation  matrices  as  inputs.  There 
does no t   ex i s t  a t  present a program t h a t  w i l l  find  the  eigenvalues 
and  eigenvectors  for  any  general nonsymmetric matrix  with a reason- 
able  degree  of  reliabil i ty.  Even i f  one d id   ex i s t  and w a s  used as 
a subroutine  for Program 2, t he   t o t a l  computing time required would 
f a r  exceed  the 0.11 seconds fo r  n = 9 reported  here. 

It should  be  noted  that  Jameson's method, although it  was de- 
veloped  independently, i s  e s sen t i a l ly  a refinement  of  Smithfs  ap- 
proach. Both  methods a r e  more prone to  numerical  inaccuracy  for 
the  case of i l l-conditioned A matrices  than  the  other two ap-  
proaches. Program 4 (Jamesonfs method) , which u t i l i z e s  t r ip le  
precision  accumulation, seems to  have a l l ev ia t ed   t h i s  problem  and 
thus i s  superior  to Program 3 (Smith' s method) f o r  which only 
double  precision was feas ib le .  

( i i)   Parameterization of the S e t  of  Positive 
Definite  Matrices and  an  Algorithm for  Generation 

of I ts  Elements 

This  section  describes  an  efficient  algorithm  that  generates 
a rb i t r a ry  n X n pos i t ive   def in i te  symmetric matrices,   as  required 
in  Section 3 .  These matrices were used  as  candidate "Q" matrices, 
which in  turn  generated "P" matrices  through  the  solution  of  the 
Liapunov equation, ATP + PA = - Q. Having parameterized  the Q 
s e t ,  one can  proceed in   order ly   fashion  in   pursui t  of an  "optimal" 
quadratic form  Liapunov function t o  resolve  the domain of s t a b i l i t y  
problem. 

The generation of t he   s e t  of  posit ive-definite n X n sym- 
metric  matrices  can be carried  out by resorting  to  the  brute  force 
approach  of  forming  an a r b i t r a r y  n X n symmetric matrix and  then 
applying  the  determinantal test [ 26 3 for  posit ive  -definiteness . 
The arbi t rary  choice of n(n + 1)/2 matrix  elements  followed by 
the  evaluation  of  the  determinants of the  n-principal  minors 
would be necessary. It would be desirable  to  generate  these 
matrices by a procedure  that  guarantees a l l  t o  be posi t ive-def ini te ,  
and in   addi t ion ,   tha t   the   en t i re  set of  positive-definite  matrices 
be  spanned. 
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It i s  w e l l  known [26] t ha t  a l l  real symmetric matrices are 
orthogonally similar t o  a diagonal  matrix,  and  that a l l   p o s i t i v e -  
d e f i n i t e  (pd) matrices are then  orthogonally similar t o  a 
diagonal  matrix  with  positive-diagonal  elements; i .e.,  le t  Q be 
pd , then 

Q = S A S ,  T (D -50) 

where 

A = diag )Al, J h 2 ,  ..., h n I 
A. > o  J i = 1, 2, ..., n' 1 

T S S = I .  

Thus, the  parameterization of a l l  pd matrices, Q, i s  reduced 
to  the  parameterization of the  group of orthogonal  matrices, S. 

In [ 9 1 ,  Murnaghan proves  that  the  parameterization of the 
group of n X n unitary  matrices U i s  accomplished by the  fac- 

(D-51) 

to r iza t ion  

U = D  

where 

'n-l fl 'n-k 1 = D x Unml x ... x u1 , 
, k=l 

i i 6  i 6  2 D = diag , e , ..., e 

(D -52) 

(D-53) 

(D -54) 
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u ii = 1, i # k , l  

ukk = COS e 

uaa = COS e 

u = 0 ,  i # j ,  i , j  # k y l  

u = - e  s i n  8 

i j  

kX 
- i o  

u = + e  +iJ s i n  e , lk 

The factor izat ion  of   the  group  of   or thogonal  matrices i s  imme- 
dia te ly   ob ta ined  by requi r ing  U t o  be r e a l ;  i . e . ,  F = a =  0, 
an = f T ,  -IT < @k < T ,  k # n,  and - ~ / 2  < e < n/2.   In   par t icular ,  - - - 

-n -1 
= 

J (D-56) fi Sn-k 
k= 1 

Dl = diag 'I, . . . , 1, f 11 (D-57) 

This   fac tor iza t ion   conta ins  (n - 1) (n - 2) / 2  thetas  and n phis,  
o r  a to ta l   o f   [n(n  - 1) /2]  + 1 parameters. The n lambdas i n  
(D-51) raise the number of parameters  to  [n(n + 1 ) / 2 ]  + 1, o r  
one more than  required.  Thus, i f  w e  r e s t r i c t  S t o  be a r o t a t i o n  



matrix ( i  .e. , choose On = 0) , the number of  parameters w i l l  be 
n(n + 1)/2,  the number required  to   represent   an  arbi t rary sym- 
metric  matrix. The choice On = 0 i s  made in to   o rde r   t o   ro t a t e  
and scale   the  e l l ipsoid  associated  with  the  quadrat ic  form  formed 
from the pd matrix  and  without  reflecting  coordinates  or per-  
muting the  coordinate  system. 

The factor izat ion  of  a pd matrix of  dimension  three i s  thus 
given by 

where 

A =  

and 

P = S M  T 

hl 0 0 

0 0 

0 0 A 

A2 

3 

- 1  0 

'23 - 
- 0 c02 

L O s@2 

ce 1 -se 1 

s12 = sel  cel 

L o  0 

1 0 

'13 = 1 1 

I s@l 0 

0 

-SO* 

CO 2 

0 

0 

1 

-SO 1 

0 

(D-59) 

(D -6 0 )  

(D-6 1) 

i 

(D -6 2) 

Y 

cO1 = cos 01, so1 = s i n  O1 . 
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I 

Thus, it is  clear t h a t  by using  this  representation  under  the 
re s t r i c t   i o n s  

A. > 0 Y i = 1, 2 ,  ..., n 1 

- - 7 r < o i < - 7 r ,  - i = 1, 2 ,  ..., n - 1 (D -6 3) 

-7r -7r (n - 1) (n - 2) 
" < Q i ~ ~ J  2 -  i = 1, 2, ..., 2 Y 

the  candidate Q matrices  are  guaranteed  to be pos i t ive   def in i te .  
For  ease  in programming the  constraints,  (D-63) w e r e  removed by de- 
f ining 

"i Ai = e Y q. r e a l  

e = +(- T + e '  mod ZT) , e ;  r e a l  

1 
(D-64)  

i i 

and  recognizing  that  since  the o i l s  only  appear  as  arguments of 
trigometric  functions,  they can  be a r b i t r a r y   r e a l  numbers. 

(iii)  Penalty  Function  Formulation and Gradient  Search 

The problem i s  to  determine 1 where 

P,= min V ( x )  
x e E  

(D-6 5 )  

E: (xl;(x) = 0 x # 0) 

using  gradient  search. The penalty  function  formulation i s  used  to 
convert t constr  ined minimum problem,  wherein the  const   a int  
surface p V ( x )  = 07 i s  determined by the  nonlinear  part [g(x)) 
of  the  original problem (x = Ax + g (x)) t o  an  unconstrained  prob- 
l e m .  This approach  changes  the  constrained problem to  the uncon- 
s t ra ined  problem  where !J i s  now redefined  as 



n 
,t = min[  (V(x)) + kl (;(x))2 + k2p(x)' 

X I (D -66) 

where kl > 0, k2 > 0, nl = 1 o r  2, (;(x))' i s  the  penal ty  

f o r   s t r a y i n g  from +(x) = 0, and p ( x )  i s  the   pena l ty   for  ap -  
proaching x = 0. 

A l l  gradient  search  procedures  require  the  computation  of  the 
grad ien t  of the  funct ion  to   be  minimized  e i ther   analyt ical ly   or  
numerically. The ana ly t ica l   g rad ien t   o f   th i s   p roblem w a s  extremely 
complex to   ca lcu la te   and   the   ca lcu la t ions  were prone  to human e r r o r .  
The numerical  gradient  computation w a s  bese t   wi th  s t e p  s ize   prob-  
lems. S t e p  s i z e  w a s  c r i t i c a l   i n   t h a t  a s ing le   f i xed  s tep s i z e  w a s  
no t   app l i cab le   i n  a l l  coord ina te   d i rec t ions ;   incor rec t   zero   g rad i -  
e n t s  were obtained  in  some d i r ec t ions .  An adapt ive   s tep   s ize  w a s  
t r ied ,   bu t   the   func t ion  w a s  s t i l l  too   var ied   in   each   d i rec t ion ,  
and   f i na l ly   t he   ana ly t i ca l   g rad ien t  w a s  r e so r t ed   t o   a f t e r   a s su rance  
of i t s  accuracy by three  different  persons'   doing  independent  cal-  
cu la t ions .  The numerical   gradient   never   agreed  exact ly   ( to   s ix  
s ign i f icant   f igures)   wi th   the   ana ly t ica l   g rad ien t   and  i t  w a s  de- 
c ided   to   accept   the   ana ly t ica l   g rad ien t .  

The minimizat ion  a lgori thm  ut i l ized w a s  "MIN-ALL" [ 2 7 ] ,  a con- 
jugate  gradient  procedure  developed a t  Grummn Aerospace  Corpora- 
t ion  based on the work  of  Davidon [ 2 8 ]  and  Fletcher  and  Powell [ 2 9 ]  
to   solve  for   the  unconstrained ,t uti l iz ing  var ious  combinat ions 
of   k l ,  k2 , and n l .  

This  procedure  required 20 minutes  of IBM 3 6 0 / 7 5  computer 
t i m e  to   eva lua te  ,t given Q, s ince  the  evaluat ion  of  a grad ien t  
w a s  required a t  every  point  along  the  search  path.  The lengthy 
computation was a drawback, but  the  frequency of a r r iv ing  a t  a 
l o c a l  minimum (even  with  the  penalty  functions) was fa r   too   h igh .  
Since  this   procedural   search was also  intended  for  the  45-parameter 
space search  for  the  optimal  Q-matrix,   and  this much uncer ta in ty  
and  difficulty,   not  to  mention  the  computational t i m e ,  had  been 
encountered, i t  was a def ini te   requirement   to   f ind  another   organ-  
ized  search  procedure. 

( iv)  Random Search  Solution  of  the Minimum Problem 
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where Q, P are pos i t ive   def in i te  symmetric matrices, and A is  
s t ab le .  Define 

v(x) = x Px T (D -6 8 )  

so t h a t  

;(x) = - xTQx + 2xTPg(x) (D -6 9) 

where g (x) i s  o (llxll) . The problem considered  in  this  appendix 
sect ion is  the  determination of 

,4 = min  V(x) 
x e E  

where 

E = jx l i (x)  = 0 , x # 0 )  . 1 

(D-70) 

(D -7 1) 

A random search  algorithm w a s  developed a s  a more e f fec t ive  
procedure t o  cover  the  state  space more uniformly  and  avoid  local 
minimum problems. It u t i l i z e s   t h e   f a c t   t h a t   i f   f o r  a par t icu lar  
point  x1  in  the n dimensional  state-space  with  corresponding 
Liapunov function  value  c1 = V(x1) = xlPx1 we have  +(XI) > 0 ;  
then  the  global minimum of V(x)  on $(x) = 0 must l i e   i n s i d e  
the  e l l ipsoid  consis t ing  of   the set  of s t a t e s  x sa t i s fy ing  
x Px < c1. The program thus randomly searches  state  points  within 
t h i s   e l l i p s o i d   u n t i l  i t  again  f inds a point x2 corresponding  to 
V(x2) = x2Px2 = c2, c2 < c1,  with > 0.  This  procedure i s  
i t e r a t e d   u n t i l  convergence i s  achieved. The longer  the program 
runs , the  higher  the  confidence  in  the  closeness of the   f ina l  
value  to  the  true  global minimum. 

T 

T 

The search  begins by a r b i t r a r i l y  choosing a point  (nine-tuple) 
in   the   s ta te -space  (see Fig. D - 1  fo r  a two dimensional  version  of 
this  technique) , and a large  value of V, ca l led  Vo. (Vo = 1 
i s  very  large; Vo corresponds  to r in  the  gradient  search  dis- 
cussed  previously.) The Liapunov matrix  equation i s  s t i l l  solved 
f o r  P; 

V = x P x  T (D-72) 
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'1 

X 
I 

V = Largest V for Which \j ,; 0 
Opt 

= - xTQx + 2x %(x) . T (D-73) 

It can  be  seen from the  expression  for V that  the  eigenvalues  of 
P w i l l  determine  the magnitude of the  intercepts  along  the  eigen- 
vector  directions by. 

Y i  = /mi i = l ,  2, ..., 9 ,  
INT 

where A i  are  the  eigenvalues of P and V is  a value of the 
function V(x) a t  a par t icular   point .  A point  in  the  x-space 
i s  r e l a t ed   t o  a point  in  the y-space  (eigenvector  space) by a 
pure  rotation  given by 
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x = c y ,  (D-74) 

where C is  the  normalized  matrix  of  eigenvectors of P (see 
Fig. D-2) . 

x2 
t 

Fig. D-2 Relationship of S ta te  Space (x) t o  I ts  Associated 
Eigenvector Space (y) i n  Two Dimensions 

Multiplying n random numbers constrained  to  the  interval 
[ -1,  +1] by the n intercept  values  (yiINT ) yields  a random 

vector  interior  to  the  hypercube  containing V(x) < V,in. Trans- 
formation  to  the  x-space  allows a computation of V and +. If 

< 0, the  vector i s  discarded  and a new random select ion i s  made. 
If +(x) > 0,  and V(x) < Vmin, a new ellipsoid  with  corresponding 
pr incipal   axes   intercepts  is  computed, and  the  procedure i s  re- 
peated  using  this new Vmin = v ( ~ ) .  The ent i re   process  i s  then 
iterated  using  the  updated  value of Vmin u n t i l  a good estimate 
of the  global minimum i s  achieved  with a high  level of confidence. 
This i s  determined by the   to ta l  number of random points  selected 
in   s ta te   space,   as   discussed below. 

Experimental   results  indicated  that  when the random numbers 
were generated from a uniform  distribution, a high  percentage of 
the  resul t ing V I S  were larger  than  the V ca l cu la t ed   a t   t he  
y-intercept  point.  . In  an a t t empt  t o  compensate f o r   t h i s  skewing 
effect,  the  eigenvec,tor  coordinates w e r e  generated  such  that  the 
distribution  near  the  boundaries would be attenuated. The Gaussian 
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d i s t r ibu t ion  model w a s  t r i e d  and  proved qui te   successful .  Each 
scaled  vector component is, generated  independently  via  the same 
Gaussian model (a l l   ze ro  mean,  same variance).  This  gives a 
Rayleigh -type d i s t r ibu t ion   i n  the scaled  radial  envelope, i .e. ,  

where o2 i s  the  variance  for  the  Gaussian  distribution and n 
i s  the  dimension  of  the  space. The t a i l  of   the   radial   d is t r ibu-  
t ion  can be attenuated as desired by varying 0 .  A fur ther  modi- 
f i c a t i o n  was  made by introducing a switching  function which 
changes 0 a f t e r  a cer ta in  number of i t e r a t ions :   fo r  less than 
1000 i t e r a t ions ,  0 = 1 /6 ,  while between 1000 and 5000 i t e r a t i v e  
points 0 = 1 / 3 .  

Further improvements i n   e f f i c i ency  were achieved by coupling 
a l inear  bisection  type  search  with  the random search,  as  follows. 
I f  a point  x(1) i s  found  corresponding t o  +(x(1)) > 0, a one 
dimensional  search  along  the  line from x(1)  to  the  origin i s  em- 
ployed t o  f ind a point kx , 0 < k < 1 such tha t  <la (1)) = 0 .  
Then the random search i s  continued  in  the smaller region 
V(x) 5 V(klx1). This  deterministic  search i s  i l l u s t r a t e d   i n  
Fig. D - 3 ,  and specif ical ly   for   our   progr  my proc  eds  to  sequen- 
t ia l ly   b i sec t   in te rva ls   a long   the   l ine  T O ,  x ( l ) p  15  times, which 
gives   excel lent  convergence on a zero  crossing of +(x) along  the 
x (1) direct ion.  

The  number of points   in  any  search was experimentally  deter- 
mined.  Experience showed tha t  even i f  up to  300,000 nine-tuples 
were selected,   the   best  estimate usually  occurred  before 5000 
points were selected.  Thus 5000 points became the  standard number 
of points x t o  be run  during  any one random search of state space. 

To surmnarize b r i e f l y ,   a l l  improvements i n  computing e f f ic iency  
have refined  the program to  the  stage where it  i s  capable  of  getting 
good estimates of the  global minimum of V(x) on $(x) = 0, x f 0 
fo r  a given Q in  about 30 seconds computing time, wi th   resu l t s  
comparable t o  e a r l i e r  random search  runs  exceeding 25 minutes. 
Figure D - 4  shows a flow  diagram  of  the Random Search  Technique. 
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Fig. D-3 Schematic  Representation of Bisection  Deterministic  Search 
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F i g .  D-4 Schemat i c  Flow C h a r t  of t h e  Random S e a r c h  of t h e  State Space 



(v) A Random Search  for  the Maxinum Problem 

The random search  of  the  45-dimensional  space  of parameters 
from  which the Q-matrix is  determined is  termed the maximum prob- 
l e m ,  since  what i s  ultimately  being  sought is  the maximum volume 
estimate  of  the domain of   a t t rac t ion  by choice of Q. 

An orderly method to  search  this  space w a s  required.  Barron 
[ l o  ] gave some ins igh t   i n to   t h i s  problem  wherein  he  termed h i s  
method "an accelerated random search. " Applied  to  this problem, 
the  technique  requires  a  starting  point  (45-tuple) , in  the  space 
which i s  to  be searched, from  which i s  obtained  an  inverse volume 
estimate  (a  carry-over from the  original  formulation  for  applica- 
t i on  of  a gradient  minimization  routine). 

A performance  measure i s  defined  as 

- P = log [W] (D -7 5 )  

30 where 10 i s  a r b i t r a r y  and  chosen to  keep posi t ive and in  
the   v ic in i ty  of un i ty .   S ince   th i s   f i r s t   es t imate  i s  the  best   to  
date ,  set  E*, the  best  estimate, equal  to E. A random s tep ,  
consistent  with  the  parameter  space  constraints on A, 8 ,  and @ 
( i . e . ,  A > 0,  181 - < n/2,  I @ ]  < n) , i s  chosen by f i r s t   de f in ing  

picking  a random number X, -1 < X < + 1, for  each  parameter  in 
the set  A, @, 8 and f i n a l l y  dFfinTng  each step s i ze   a s  

L -x / a  2 2  
au = (sgn x) ; e 

where 

f for Ai 
i = l ,  9 

f o r  Q i  i = 1, 28 

f o r  Qi i = l ,  8 

and 

(D-76) 

d = arb i t ra ry   d iv isor   ( taken   as   4   in i t ia l ly) .  
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Addition of the  corresponding random step to  the  previous 
values  of A, 0 ,  and 0 results  in  another  value  of E. I f  

A u  = - Au, the  consistency  with  the  constraints on A, 0 ,  and d) 
i s  checked  again,  and p i s  recalculated.   I f  i s  s t i l l  grea te r  
than E*, a new random step i s  chosen  and  added t o  the  point  asso- 
c ia ted  with E*. A s  long a s  < E*, w e  set the new value  of 

random s t e p  i s  i n s t i t u t e d  from the  point (A, 8 ,  0 )  associated 
with E*. 

- P > P*, a s t e p  in  the  opposite  direction i s  taken by se t t i ng  

- P* = and the step s i ze  i s  doubled u n t i l  > E*, then a new 

The accelerated random search i s  based on the  concept  of  ran- 
domly choosing a search  direction and a s t ep   s i ze ,  and searching 
in   t ha t   d i r ec t ion   un t i l  a minimum i s  found. A t  the minimum, a new 
random di rec t ion  and s tep   s ize   a re  chosen  and  the  process i s  re- 
peated. A s  the  search  gets  closer t o  the minimum, i .e.,  E* de- 
creases,  the  variance of the   d i s t r ibu t ion  from  which the random 
s t e p  i s  drawn i s  decreased t o  faci l i ta te   accurate   determinat ion of 
the minimum . 

The l a s t  change tha t  was incorporated  into  the  algorithm was 
a "creeping  aspect" of the random search by which the random steps 
(Auls) become e i the r   l a rge r  o r  smaller   as   required.   In   par t icular ,  
i f  d = 4 in  the  expression f o r  Au, as  prescribed above,  and 
say 100 d i rec t iona l  steps a r e  looked a t  with no improvement, then 
d i s  halved,  thereby  doubling  nu. Another one hundred t r i a l s  
with no improvemnt  cause  another  halving of d ,   e t c .  If an i m -  
provement is  obtained, d i s  set back t o  4 and  the  expansion 
begins anew. I f   af ter ,   say,  a t o t a l  of 500 such t r i a l s  where u 
i s  16 times i t s  original  value and no improvement has been  found, 
then d i s  s e t  back t o  4 and i s  consecutively  doubled t o  decrease 
the  step s i z e  in  the same  manner as   the step s i ze  was increased 
above. Thus the  creeping random search  has  an  expanding and con- 
t r a c t i n g   f a c i l i t y ,  which proved useful  in  determining  the  best 
vel-1 estimate.  
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APPENDIX E 

INTERPRETATION OF NUMERICAL RESULTS 

This  appendix  describes  explicitly  the method used  for com- 
puting  approximate  numerical bounds on the  physical   variables 
corresponding  to a given volume estimate. Let the volume estimate 

J(Q) = 
- 1 

[ ln/det P I 2  

r e s u l t  from the  matrix Q, the  corresponding  positive  definite 
ma tr %x 

P = CAC T 

where A = diag (AI, . . . , h) i s  the  diagonal  matrix  containing 
the  eigenvalues of P,  the columns of the  orthogonal  matrix C 
are  the  (normalized)  eigenvectors of P,  and the  quadratic volume 
estimate 

x P x < J .  T 

Putting 

y = cx 

transforms (E -3) into  the  diagonal form 

The  maximum in te rcept  of yTAy = J with  the y i  ax is  i s  a t  the 
point 

Let C i  denote  the  transpose of row i of the  matrix C and l e t  T 

Then the   en t r ies  of x(i)  provide  conservative  estimates of the 
maximum values of the  physical   variables;   the  vectors  xi(i= 1,. . . ,n) 
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are in   fact   the   points   in   x-space a t  the  extremities of the  prin- 
cipal  axes  of  the  hyperellipse xTpx = 1. 

For  example, consider  the  best  run (number 6 )  a t  the   Ins t i -  
t u  te f o r  Space Studies  with 

Q =  

A =  

vel-' = 0 .488  x 10 35 

4 .16   -5 .82   3 .68  0 0 0 

-5.82  8 .37  -5 .17 0 0 0 

3 .68   -5 .17   3 .26  0 0 0 

0 0 0 0 .068   -0 .122   0 .311  

0 0 0 -0.122  2 .16  -0 .537 

0 0 0 0 .311   -0 .537   1 .42  

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

= 9.604 x 10 -9 

' 2 0 8 . 1  0 0 0  0 0 0 

0 32 .7  0 0 0 0 0 

0 0 1 8 . 8  0 0 0 0 

0 0 0 2 .12  0 0 0 

0 0 0 0 0 . 4 2 8  0 0 

0 0 0 0  0 0 .403  0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 .074  0 . 0 8 5  0 .340  

0 . 0 8 5  1.14 0 .400  

0 .340  0.400 1 . 5 7  

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 0 0  0 0 0 .00800 0 0 

0 0 0 0  0 0 0 0 .00313 0 

0 0 0 0  0 0 0 0 0.00142 

Y 

(E -10) 
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C =  

'0.006 0 0 0 .751  0 0 0.660 0 0 

1.00 0 0 -0.008 0 0 0.008 0 0 

0.011 0 0 0.660 0 0 -0.751 0 0 

0 0.001 0 0 0 -0.223 0 -0.975 0 

0 1.00 0 0 0 0.031 0 -0.006 0 

0 0.032 0 0 0 -0.974 0 0.223 0 

0 0 -0.001 0 -2 .'24 0 0 0 

0 0 -1.00 0 0.035 0 0 0 

0 0 -0.035 0 -0.974 0 0 0 

and corresponding  vectors X . . . J  X (1) given by 

.39 x 10-8 

.68 x lo-' 

.82 x 

0 

0 

0 

0 

0 

0 

0 

0 

0 

- .33  x 

.47 x 

-1.5 x 

0 

0 

0 

0 

0 

0 

.X x 

1.7 x 

.54 x 10-6 

0 

0 

0 

- . 3 2  x 10" 

- 2 . 3  x 

.81 x 

0 

0 

0 

-1.7 x 10-3 

-1.0 x IO-' 

0 . 4  x 

0 

0 

0 

I 

. 5 1  x 

- . 5 4  x 10-6 

. 4 ~  x 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

- 2 . 5  x 

- 1 . 7  x IO-' 

. 5 J x  

0 

0 

0 

0 

0 

0 

- . 3 3  x 

.51 x 

-1.5 x 

J 

-0.975 

-0.007 

0.224,  

(E -11) 

(E -12) 
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Finding  the maximum f i r s t   en t ry   in   these   vec tors   y ie lds   0 .73  x 10 
radians = 2.48 min as  an  estimate  for  the maximum absolute  value 
of x 1  = @ from which the  physical  system w i l l  se t t le .  The v a r i -  
ables x4 = 8 and x7 = + are   handled  just   as  x ~ .  The var iables  

estimated  in  the same way, bu t   the   resu l t s  are dimensionless so 
that  transformation  to  physical  variables  requires  further  scaling 
by use of (A-48)  namely 

-3 

x2 = viy x3 = x5 = v i y  x6 = aiy x8 = vky and  x9 = a i  are 

(E -13) 

and then removing the  zero  equilibrium by use of (A-37) (note  that 
@e = 8, = qe = 0) namely 

(E -14) 
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APPENDIX F 

OTHER COMPUTATIONAL TECHNIQUES 

(i)  Algorithm Based on Selecting P Directly 

Computer runs were made using a technique  of  generating a 
posit ive  definite  P-matrix  directly,   without  generating Q and 
then  solving  the Liapunov equation 

PA + ATP = - Q 

for  P .  This work originated  with  the  motive of speeding  the 
rout ine so t h a t  a grea t  many matrices  could  be examined with a 
minimum of machine time. The abort  feature  described  previously 
was e s sen t i a l   t o   t h i s   p l an ,  because  the  fact  that P i s  posi t ive 
de f in i t e  does  not  ensure  the  definiteness of Q.  Use of the  abort 
procedure  without  direct  generation of P had  reduced  the time 
required  to  investigate a matrix from 30 seconds to  an  average of 
about 10 seconds (2 seconds to  search  nine  dimensional  space and 
8 seconds to  generate Q and solve  the Liapunov equation  for  P).  
The t i m e  saved was not  the  only  advantage of direct   P-matrix 
generation. 

I t  soon became clear   that   d i rect   generat ion of the   Pmatr ix  
has  other  advantages. The eigenvalues  and  eigenvectors of P 
have direct   physical   interpretation  in  the  nine  dimensional  state 
space, so  that  picking P directly  permits more insight  into  the 
geometry  of  parameter  space  than  the  Q-generation  procedure.  In 
addition, when the   Pmatr ix  i s  generated  directly,  the  A-matrix 
i s  unnecessary, and the time der ivat ive ic can  be e f f i c i e n t l y  
computed d i r e c t l y  from the  nonlinear  function. By se t t i ng  x1 = @' 

x9 = ai, the  equations of Fig. A-8  may be writ ten  in  the form 
( f o r   a l l   i n i t i a l  momenta zero):  

x2 = vi ,   x3 = x4 = 8 ' 3  x5 = v i ,  x6 = ai, x7 = $ ' y  x8 v i ,  

x1 - 

x 2  - 

x3 - 

" 

" 

" 

ax2 - a(x5   s in  x + x cos xl) tan x 

bx2 + - b sat(lOkAyl + 9kx3) 

1 8 4 

k 

2(x3 + AY1) 
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x4 = - a(x5 cos x - x8 s i n  xl) 1 
b 9 
k x5 = - bx5 + - s a t  ( 10d12k(APl cos r2 4- A P 2  cos rl 5 x6)) 

x6 = - 2x6 - 2d12(cos r2Ap1 + cos Flap2) 

x7 = - a(x5 s i n  x + x cos xl)/cos x4 1 8 

- b(X8 - s a t  ( 10d12k(-AB1 s i n  r2 - AP2 s i n  rl + 5 9 x9)) 

ig = - 2xg + 2d12(sin r AB + s i n  rlAB2) , 2 1  

where 

1 a = K K / I ,  b = -  m c  z y  k = Kc, d12 = 2 sgn(ylc - Y2J J 

m 
07-31 

he = ho = ho = 0 ,  rl = Ayl + ylc, r2 = Ay2 + y2c 
@ II/ 

re lates   the  present   notat ion  to   that   of   Fig.  A-8 and sa t (u)  = + 26 
fo r  26 < u,  sat(u) = u f o r  + 26 > u > - 26, sa t (u)  = - 26 fo r  
u < - 26. The main improvement i n  speea i s  in  the  calculation  of 
Ayi and A B i .  Specif ical ly ,  by using  the  upper  sign for i = 1 
and the lower for i = 2 i n  (F-5) , 

-1 - E@ tan yic 
ayi = tan (1 + E (tan yic + fa> tan yic B > ,  

where 

tan B 
7 cos x s i n  x i c  

7 4 cos yic 7 1 7 4 ,  

7 4 1 7 cos yic 

1 4 7 cos y ic 1 4 i c  

+ cos x tan x - s i n  x s i n  x 

tan Pic 
E@ = (cos x - 1) + s i n  x7 s i n  x tan x 7 s i n  x 

tan Pic 
5 tan x s i n  x cos x - tan x cos x tan y . 
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The formula in   Fig.  A-8 i s  used  to compute A f 3 i  unless  round-off 
e r r o r  would  be significant  because A B i  < 0.1, i n  which case 
Af3 = sinm1 IJ., where p i s  the i terat ively  obtained  solut ion of 

K = - a tan Pic + CL 

i n  which 

and   l e t t i ng   b j  = cos  xj  - 1, j = 4,7,  

K =  (b7+  b4+ b b ) t a n  f3 f s i n  x (1+ b4)cos y k s i n  x s i n  y ,(F-8) 7 4  i c  7 i c  4 i c  

where the  upper  sign i s  used  for i = 1 and the  lower  sign  for 
i = 2 .  The procedure i s  f a s t ,  and  does not  require  double pre-  
c is ion  ar i thmetic .  

I n i t i a l  experiments  with  direct  generation of the  P-matrix 
proceeded by using  the  classical  Gershgorin theorem [31] and ap- 
plying  the  results  to  the OAO. 

The methods shown in  (F -2) through (F-8) , when  prograrmned f o r  
an IBM 360/75, investigates  over 50,000 P matrices per  hour. 
Additional compactness  and  speed are  obtained by generation  of 
points x by l e t t i n g  x = Cy a s   i n  (D-74),  where 

- n 2 
1 

j=l 

i n  which R, 41,  . . .) & are independent,  each 4 i  i s  uniformly 
d i s t r ibu ted  on (-ly +l), and R i s  so d is t r ibu ted   tha t  
Prob(R < r) = rn.  This  procedure  generates  uniformly (by volume) 
d is t r ibu ted  random points y without  discarding  points as de- 
scribed  following  Fig. D-2. 

I n i t i a l  experiments  generated  35,000  positive  definite ma- 
t r i c e s  P in  about 15 minutes  of computer time, revealing no pos- 
i t ive   def in i te   mat r ices  Q, i .e . ,  the estimate of  the domain  was 
JCP) = 0 for  each P.  The suspected  reason i s  t h a t   r e l a t i v e l y  
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few posi t ive  def ini te   matr ices  P have associated  posi t ive  def i -  
ni te   matr ices  Q. The bes t   pos i t ive   def in i te   mat r ix  from the 
Q-generation method w a s  therefore  factored and  used to  generate a 
s t a r t i n g  P matr ix   for   this  method, with  inconclusive  results.  

This  procedure shows promise a t   the   p resent   wr i t ing ,   bu t   the  
invest igators  were unable  to  refine i t  further  during  the  present 
contract .  

( i i )  On Improved Estimates v i a  Lur6-Liapunov  Functions 

In  developing  the  optimal  quadratic  estimate  of  the domain of 
a t t r a c t i o n  w e  chose to ' u se  a quadratic form  Liapunov function 
because  the  resulting estimate is  easy  to   visual ize  and in t e rp re t ,  
i t  compares favorably  with more complex estimates,  and  because i t  
eliminates a number of  computational  problems. However, impl ic i t  
in   this   choice i s  the  assumption  that a suff ic ient ly   large  family 
of ell ipsoids  can be found  such t h a t  none of  the  system  trajec- 
tor ies   leave any member of  the  family once  they a re   i n t e r io r   t o  
t h a t  member. This may be a severe  . res t ra int   consider ing  that   the  
system  nonlinearities  are  not  accounted  for  in  the  generic  shape 
of  the  estimate.  This  section  describes a possible method f o r  
accounting  for some of the  nonl inear   effects   in   the  generic  shape 
of the  estimate. 

Consider  the  fact  that  the  system model can  be  rewritten t o  
ident i fy   the "dominant" nonlinearity  as  follows: 

= Ax + Bfa(a) + E (g(x) - Bfa(o)) 

a = &  
(F-10) 

where A i s  as  before,   fa(x) i s  the  3-vector of motor satura-  
tion  functions  with  linearized  3-vector argument a,  B and C 
are  gain  matrices,  the t e r m  in  parentheses i s  the new col lect ion 
of nonl inear i t ies  and E i s  a perturbation  parameter. Note tha t  
f o r  E = 1 we have the  original  system model, and f o r  E = 0 we 
have  the Popov approximation  to  the  system model. 

Now consider  the Lur6-Liapunov function 

r' rn 

v(x, a) = x T Px + 1 ( fa(a))'da , (F-11) 
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and i t s  der ivat ive 

T a  I 

;(x, a) = - xTQx + xT(2PB + A ) f  (a) + ( fa(o))  Bfa(o) 
(F -12) 

[2xTP + (fa(.)) T 1  , ,g(x) r - Bfa(o) ] ]  

The function V(x, a) i s  posi t ive  def ini te   s ince  the  integral   of  

the  saturation  function  vector i s  posi t ive (f:(a) = fi(ai)) .  The 
re la t ionship  between P and Q i s  s t i l l  given by the Liapunov 
equation. It i s  required  to show that  $(x,  a) is  negative  over 
a t  l e a s t  some f i n i t e  neighborhood  of the  s ta te   space  or igin so 
that   LaSal le 's  theorem (Section 3) can  be applied  to  obtain an 
estimate.  

a 

Before w e  inves t iga te   th i s   fur ther ,   l e t   us   no te   the  computa- 
tional  complexities  introduced by t h i s  new formulation. F i r s t ,  
unless  the  quadratic form strongly dominates  the  integral t e r m  i n  
V(x, a) the  surface V(x, a) = C w i l l  not be l i k e  an e l l i p so id .  
Therefore  the  search  procedure  for  the minimum of V(x, a) on 
Q(x, a) = 0 must be revised  since it i s  based on putting a box 
around  the e l l i p so id .  Secondly,  since  the  estimate i s  no longer 
an  ell ipsoid  the  calculation  of i t s  volume is  much  more compli- 
cated. Thus, before  launching a substant ia l   effor t   to   solve  these 
problems one would l i k e  some assurance  that  the new procedure w i l l  
be an improvement. This  can  be  obtained i f  the  function +(x, a) 
i s  negat ive  def ini te   for  E = 0, i . e . ,  i f  the Popov approximation 
i s  globally  asymptotically  stable.  

Kalman [ 30 3 has  proven  the  equivalence  of Lur; -Liapunov func- 
t ions and Popov's  condition,  i .e.,  a I,&-Liapunov function  of  the 
form given  above  can  be  constructed  with  negative  definite  deriva- 
t i ve   i f   t he  Popov theory shows the  system  to be absolutely  s table .  
Unfortunately,   as  stated  in Appendix C y  t h i s  cannot be done with 
the  theory  as i t  now stands . Thus , t h i s  approach was not  carried 
any fur ther   in  view of   our   inabi l i ty   to   jus t i fy   the   e f for t   tha t  
would  be required  to  solve  the  outstanding  computational problems 
indicated  above. 



APPENDIX G 

DETAILED FLOW CHARTS 

This appendix  contains  flow  charts of t h e   s t a b i l i t y  
analysis  algorithms where a Qmatr ix  i s  i n i t i a l l y   s e l e c t e d  
and where a P-matrix is  i n i t i a l l y   s e l e c t e d .  Both algorithms  are 
basical ly   the same, the  primary  difference  being  that  in  the 
Qmatrix  selection  an  inversion  process i s  required  to  determine 
the  associated  P-matrix (which i s  assuredly  posi t ive  def ini te) ,  
whereas in  the  P-matrix  selection  the  result ing Q-matrix (not 
necessar i ly   posi t ive  def ini te)  found  by a matrix  multiplication 
must be  tes ted  to   ascer ta in  i t s  character.  A l l  Q m t r i c e s   t h a t  
r e s u l t  from picking a P-matrix must be  discarded i f  they  prove 
t o  be semidefinite o r  negative  definite  because  of  the  theory  being 
u t i l i z e d .  

A thumbnail  sketch  of  each  of  the  subroutines shown in   the  
flow  charts  (Figs. G-1 and G-2) follows. 

Subroutine AFX 

This  subroutine  calculates  the matrix A and the  nonlinear 
vector  g(x) of the  equations  of  motion i = Ax + g(x) .  

Subroutine QGEN 

This subroutine  generates a posi t ive  def ini te   matr ix  Q given 
a set of  n(n + 1 ) / 2  independent  variables  as  given  in Appendix D 
p a r t   ( i i )  . 

Subroutine DSRCH 

This subroutine is  the random search  subroutine  for  the  state 
space where a min V with 0 = 0 i s  t o  be achieved. 

Subroutine PEAIQ 

This  subroutine  solves  the  equation' ATP + PA = - Q for  a 
positive  definite  P-matrix,  given a s table   Amatr ix  and a 
pos i t i ve   de f in i t e   Qmat r ix .  
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EXTERNAL IHIERNAL 
INPUTS: INPUTS: 

VSR = 10 

KEEP- 0 

60 
@ PSR - 2  - MOVE="+ 1 TITLE 

NSKlP 
LMlN 
NUKM 
KlKlT 
HXCUE 
NSW 
NSWl 
NSWZ 

I 

V* = VOL 
P.'P 

P* = P 

t J I 

L 

r 

A U =  - A u  
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DIVIO=OIVI  

NO 

DlVl  = 64 

I 
rd Numbers 

A U  =LIMO AUlDlVl 
NEW X ,  t ,* c- 
BYOLD + A U  

Fig .  G - 1  Flow Char t   for   Algor i thm Based on 
Q-Matrix 
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r 

D l V l  =DIV112 
MOVE = 0 

MOVESNSW2 

NO 

D l V l  = ZDIVIO 

MOVE = O  
DlVlO = DlVl  

p = p  
V. = WL 

MWE=O 
MY = MY + 1 

D l V l =  DlVlO 
W l N = l  

A' = A, # ' =  0 

W I N  = 0 

AU = - AU 
'DIVIILIM 

fo = Card Numbers 

F i g .  G-2 Flow  Chart   for   Algori thm Based on 
P -Matrix 
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Subroutine DEIGN 

This  subroutine  calculates  the  eigenvalues  and  eigenvectors 
of the  posi t ive  def ini te   Panatr ix .  

The logic  of  the Qparameter o r  P-parame ter search i s  in- 
cluded  in  the  flow  charts G - 1  and G - 2 ,  respect ively,   s ince  this  
d i rec t iona l  random search  procedure i s  applicable  to most any sys- 
t e m .  

Figure G - 3  i s  a flow chart  of the  simulation of the  system 
where i n  most of the  subroutines  l isted above  were u t i l i z e d  and 
augmented as l i s t e d  below. 

Subroutine DERIV 

This  subroutine i s  the set of equations of  motion of the sys- 
t e m  k = Ax + g(x).  

Subroutine JINPG 

This  subroutine  contains a fourth  order Runge-Kutta integra-  
t ion  scheme with  f ixed step s i ze .  
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YES 1 
CONTINUE 

T M  = 76.3 
T 1  = 4.5 
T2 = 0.5 
XKM = 1/13 
XKC = 2.685 X lo5 
A l l  = A13 = 0 
AITREN = 1500 
F2 L I M  = 26 
ICNT = 9 

1 

1 

CONT INUE 

t 
WRITE 
X(I) 

, 

ICNT = 
ICNT f 1 

i-1 PEA IQ 

1 

JSW = 0 

I t 
READ CALL 
Q(I,J) QGEN 

NO 

l C N T =  0 

1 
CONTINUE 

CALL 
J INPG 

Fig .  G-3 Generic  Simulation  Program Flow C h a r t  
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